
Open Vocabulary Compositional Explanations for
Neurons

Biagio La Rosa
Department of Computer Science and Engineering

University of California, Santa Cruz
bilarosa@ucsc.edu

Leilani H. Gilpin
Department of Computer Science and Engineering

University of California, Santa Cruz
lgilpin@ucsc.edu

Abstract

While neurons are the basic units of deep neural networks, it is still unclear what
they learn and if their knowledge is aligned with that of humans. Compositional ex-
planations aim to answer this question by describing the spatial alignment between
neuron activations and concepts through logical rules. These logical descriptions
are typically computed via a search over all possible concept combinations. Since
computing the alignment over the entire state space is computationally infeasible,
the literature commonly adopts beam search to restrict the space. However, beam
search cannot provide any theoretical guarantees of optimality, and it remains
unclear how close current explanations are to the true optimum. In this theoreti-
cal paper, we address this gap by introducing the first framework for computing
guaranteed optimal compositional explanations. Specifically, we propose: (i) a
decomposition that identifies the factors influencing the alignment, (ii) a heuristic
to estimate alignment at any stage of the search, and (iii) the first algorithm that
can compute optimal compositional explanations within a feasible time. Using this
framework, we analyze the differences between optimal and non-optimal expla-
nations and demonstrate that 10–40% of explanations obtained with beam search
are suboptimal when overlapping concepts are involved. Finally, we evaluate a
beam-search variant guided by our proposed decomposition and heuristic, showing
that it matches or improves runtime over prior methods while offering greater
flexibility in hyperparameters and computational resources.

1 Introduction

Compositional explanations [14] are a method for interpreting how individual units or neurons
contribute to spatial alignment between input features and higher-level representations. The key idea
is capturing the interaction between low-level (e.g., colors, textures, shapes) and high-level concepts
(e.g., objects, entities) via propositional logic formulas able to express the alignment between these
complex relationships and neuron activations.

One of the key problems to achieve this goal is that the full search space encompassing all of the
possible combinations between concepts cannot typically be exhaustively explored due to its size. As
a result, prior work has relied on beam search to identify plausible alignments [14]. Although the
resulting explanations are valid, it is unclear whether these explanations are, in fact, optimal. While
beam search does not guarantee optimality, it might converge to it due to unstudied or unknown

Preprint. Under review.

properties of the underlying datasets. If not, the explanations produced by beam search may represent
only a subset of the alignment structure, offering a partial view of neuron behavior.

The main contribution of this work is to make navigating the state space tractable. To achieve this, we
propose a decomposition of the Intersection-over-Union (IoU) metric that reveals a set of fundamental
quantities governing alignment quality, and we design a heuristic and a corresponding algorithm that
jointly reduce the size of the state space and guide the search process. This approach enables the
computation of optimal compositional explanations in feasible time. To the best of our knowledge,
this is the first attempt in this research direction. As a first step, we apply our method to the computer
vision domain, given its prominence in compositional explanation research.

Our contributions are as follows:

• We propose a decomposed Intersection over Union score (dIoU) that identifies fundamental
quantities for alignment quality and enables a better characterization of the impact of logical
operators on spatial alignment.

• We design a heuristic and a corresponding algorithm that jointly reduce the size of the state
space and guide the search process. We show that this algorithm computes guaranteed
optimal explanations in feasible time and we analyze the differences between optimal and
non-optimal explanations.

• We show that part of our proposed heuristic can be used directly to guide beam search
with significant gains in flexibility and competitive or better performance than competitors.
Specifically, our variant scales more effectively than competitors with respect to explanation
length and beam size, and it is less resource-intensive and easier to parallelize.

In Section 2, we give an introduction to the relevant literature in the background and specify our
framework for optimal compositional explanations. In Section 3, we analyze our contribution.

2 Optimal Compositional Explanations

2.1 Background and Related Work

Neuron explanations aim to understand what individual neurons learn during the training process.
Different categories of methods have been proposed to decode different behaviors. Among the
most popular in computer vision, we can cite the one that generates samples that capture features
recognized by a neuron [5, 18, 15] and the ones that generate textual descriptions that correlate neuron
activations and samples associated with a given concept [8, 16? ? ? , 17] through foundational
models.

Differently from them, compositional explanations are a family of neuron explanations that specifi-
cally focus on the spatial alignment between a neuron activation range and concepts and express
them through propositional logic formulas. The seminal work in this area is Network Dissection
[1, 2], which associates each neuron with the single concept that maximizes this alignment. This
approach was extended by Mu and Andreas [14] to associate relationships between multiple concepts,
in an attempt to capture a higher degree of polysemantic behavior [4]. Relationships explored in the
literature include co-occurrence [1], exclusion [14], relative position [6], and hierarchy [13].

Formally, let D = {x1, x2, ..., xn} be a probing dataset. Let z be a neuron to be explained in a probed
model, and let d be both the dimension of its activations and the dimensionality of each sample
in D1. Let L1 be the concept set used to annotate samples in D, and Ln be the set of all possible
logical formulas of arity at maximum n between concepts in L1. Compositional explanations aim to
assign to z the logical combination L ∈ Ln of concepts in L1 (e.g., ((Cat OR Car) AND White)) that
maximizes the alignment between the localization of a given neuron’s activation range [τ1, τ2] and
the localization of the concepts within the probing dataset.

To reduce the search space, compositional explanations typically make two assumptions: concepts in
the explanation are distinct (Assumption 1), and concepts are combined incrementally to form labels
(e.g., (((((A⊕B)⊕ C) . . .)⊕ Z))(Assumption 2), where ⊕ indicates a logical connective. Even
with these assumptions, Ln is too large to be explored exhaustively. The total number of combinations

1In the literature, this is typically obtained by upscaling/downscaling the activations.

2

is
∑n

k=1 n
k−1
o

∏
k(|L1| − k), where no is the number of logic connectives, and each combination

requires the comparison of 2d values to compute the alignment. In the settings considered by Mu and
Andreas [14], this leads to 2.8× 1014 operations, rendering both storage and runtime infeasible. To
cope with this, prior work adopts vanilla [14, 6, 13, 12] or informed [11] beam search with a small
beam size. However, beam search does not guarantee optimality, leaving open the question of whether
the resulting compositional explanations are the best possible or if better-aligned explanations exist.
In the following, we characterize the fundamental quantities that influence alignment and propose
both a heuristic and an algorithm that guarantees the optimality of explanations.

2.2 Fundamental Quantities

This section introduces our decomposed Intersection over Union score (dIoU) and the corresponding
fundamental quantities. Alongside the assumptions introduced earlier, we adopt the following:
Assumption 3. The logic operators connecting concepts are 00-preserving (i.e., they cannot produce
a 1 from two zeros). 2

Terminology and Notation We use the term “the neuron fires” to indicate when its output lies
within a specified activation range (e.g., top activations) and use | · | to indicate the cardinality of a set.
According to previous literature, we define the Concept Tensor ML1

∈ {0, 1}|L1|×|D|×d as the binary
tensor corresponding to the localization of each concept within the dataset samples. From the Concept
Tensor, we can extract, for each concept k, the Concept Matrix Mk ∈ 0, 1|D|×d. Similarly, we define
the Neuron Activation Matrix N ∈ 0, 1|D|×d as the binary matrix indicating the locations where the
neuron fires within the dataset samples. Given the above notations, we propose the definitions of the
following quantities.
Definition 2.1. We define the set U of unique elements of D as the set of locations associated with
exactly one annotation, and the set C of common elements of D as the set of locations associated
with multiple annotations.

U ={(x, j) | ∃!k ∈ L1 s.t. x ∈ D, j ∈ [d],ML1

[k, x, j] = 1

C ={(x, j) | ∃k1, k2 ∈ L1 s.t. x ∈ D, j ∈ [d], k1 ̸= k2,ML1

[k1, x, j] = 1,ML1

[k2, x, j] = 1

Definition 2.2. Given a neuron activation matrix N , we define the unique activation set NU as the
set of locations where the neuron fires on unique elements, and the common activations NC as the
set of locations where the neuron fires on common elements.

NU ={(x, j) | (x, j) ∈ U,N [x, j] = 1}
NC ={(x, j) | (x, j) ∈ C,N [x, j] = 1}

Definition 2.3. Given a neuron activation matrix N and a concept k ∈ L1, we define the unique
intersection set IU as the set of unique elements that are annotated with k and where the neuron fires,
and the common intersection set IC as the set of common elements in annotated with k where the
neuron fires.

IU (k) ={(x, j) |Mk[x, j] = 1, (x, j) ∈ NU}
IC(k) ={(x, j) |Mk[x, j] = 1, (x, j) ∈ NC}

Definition 2.4. Given a neuron activation matrix N and a concept k ∈ L1, we define the unique
extras set EU as the set of all unique elements in D annotated with the concept k and where the
neuron does not fire, and the common extras set EC as the set of all common elements in D annotated
with the concept k where the neuron does not fire.

EU (k) ={(x, j) |Mk[x, j] = 1, (x, j) ∈ U, (x, j) /∈ NU}
EC(k) ={(x, j) |Mk[x, j] = 1, (x, j) ∈ C, (x, j) /∈ NC}

Definition 2.3 and Definition 2.4 can be generalized to the case of label L ∈ Ln. In this case, the
binary label matrix ML is obtained as the result of the bitwise logic operations induced by the logic
operators connecting single concepts k ∈ L.

2This assumption has been implicitly adopted in prior literature, where the commonly used bitwise OR,
AND, and AND NOT operators all satisfy the 00-preserving property.

3

Table 1: Visualization of identified quantities for a sample x. In pink the unique extras. In yellow
the common extras. In green the unique intersection. In cyan the common intersection.

Vector dIoU

N(x) 1 1 1 0 0 0

Mc1 [x] 1 1 0 0 1 1 2/5
Mc2 [x] 1 1 0 1 0 0 2/4
Mc3 [x] 1 0 1 0 1 1 2/5

Theorem 2.1. Given a binary neuron activation matrix N and a label L ∈ Ln, the decomposed
alignment between the annotations associated with L and the neuron activations is defined as:

dIoU(N , L,D, IC , IU , EU , EC) =

∑
x∈D |IU (L)x|+ |IC(L)x|

|N |+
∑

x∈D |EU (L)x|+ |EC(L)x|
(1)

where the subscript indicates the quantity per sample.

Proof. See Section A for the proof of equivalence between dIoU and the IoU score.

We visualize all the identified quantities and the dIoU score in Section 2.2.

Observation 1 (Impact of Operators on Quantities). Given the above definitions, we can quantify
the impact of the OR, AND, and AND NOT bitwise logic operators connecting two concepts k1 and
k2. The OR operator is 1-preserving (i.e., any 1 in either concept remains 1), and thus it preserves
the common elements shared by the two concepts and combines (i.e., sums) the non-shared ones
and unique elements. The AND operator is 0-preserving (i.e., any 0 in either concept forces 0)
and therefore removes all of the unique elements as well as common elements not shared by both
concepts. Finally, the AND NOT operator preserves all of the unique elements but removes the
common elements shared by both concepts. These operators will be the ones considered in this paper.

2.3 Heuristic

This section introduces our proposed heuristic. Given a label L ∈ Li s.t. i ≤ n, the generic goal
of this heuristic is to estimate the label alignment in a faster and less computational intensive way
than directly computing it. Specifically, the proposed heuristic gives an estimation for the following
maximum and minimum quantities: (i) given a logic operator ⊕, a label Li, and a concept k, the
estimate alignment of L⊕k, (ii) alignment reachable starting from L and chaining additional concepts
not yet included in L, up to a length of n.

2.3.1 Estimate Label Quantities

To facilitate the estimation of the alignment of L ⊕ k, we introduce the binary Disjoint Matrix
D ∈ {0, 1}|L1|×|L1|, which encodes whether two concepts share any annotation overlap and can be
computed once per dataset as a preprocessing step. Specifically, for every pair (k1, k2) of concepts:

D[k1, k2] =

®
1, if ∀(x, j) ∈ |D| × d |Mk1 [x, j] ̸= Mk2 [x, j],

0, otherwise
(2)

In addition, we introduce two new quantities, Space for Common Extras and Space for Unique Extras,
derived from Definitions 2.1, 2.2 and 2.4, to characterize and constrain the available space for the set
of extra elements:

SEC = {(x, j)} : (x, j) ∈ C,N [x, j] = 0 SEU = {(x, j)} : (x, j) ∈ U,N [x, j] = 0 (3)

By Assumption 2, we can separate the label into its left (L←) and right (L→) sides. Then, we can use
D to check whether the left and right sides of L share common concepts or are disjoint and estimate
alignment differently in the two cases.

4

Disjoint: If the two sides are disjoint, then the common quantities are set to 0 since there cannot be
shared elements between disjoint vectors (|IC(L)| = |EC(L)| = 0). Regarding the unique elements,
their value can be derived by Observation 1: the sum of the quantities of each side for OR and 0 for
AND. For AND NOT, we set them to 0 because it degenerates into an uninformative case3.

IU (L) =

®
|IU (L←)|+ |IU (L→)|, if ⊕ = OR

0, otherwise
(4)

EU (L) =

®
|EU (L←)|+ |EU (L→)|, if ⊕ = OR

0, otherwise
(5)

Overlap: If the two sides overlap, we can estimate the exact value of the unique quantities for OR and
AND using the same formulas as in the disjoint case. For the AND NOT operator, by Observation 1,
the value equals the quantity of the left side. For the common quantities, we can derive them by
combining the definitions in Section 2.2 and Observation 1, obtaining:

|ICmin(L)x| =


max(|ICmin(L←)x|, |IC(L→)x|) if ⊕ = OR

max(|ICmin(L←)x|+ |IC(L→)x| − |NC
x |, 0) if ⊕ = AND

max(|ICmin(L←)x| − |IC(L→)x, 0) if ⊕ = AND NOT

(6)

|ICmax(L)x| =


min(|ICmax(L←)x|+ |IC(L→)x|, |NC

x |) if ⊕ = OR

min(|ICmax(L←)x|, |IC(L→)x|) if ⊕ = AND

min(|ICmax(L←)x)|, |NC
x | − |IC(L→)x)| if ⊕ = AND NOT

(7)

|EC
min(L)x| =


max(|EC

min(L←)x|, |EC(L→)x|) if ⊕ = OR

max(|EC
min(L←)x|+ |EC(L→)x| − |SEC

x |, 0) if ⊕ = AND

max(|EC
min(L←)x| − |EC(L→)x|, 0) if ⊕ = AND NOT

(8)

|EC
max(L)x| =


min(|EC

max(L←)x|+ |EC(L→)x|, |SEC
x |) if ⊕ = OR

min(|EC
max(L←)x|, |EC(L→)x|) if ⊕ = AND

min(|EC
max(L←)x|, |SEC

x | − |EC(L→)x|) if ⊕ = AND NOT

(9)

Note that, since L→ is always an atomic concept (by Assumption 2), its quantities are exact. A
detailed derivation is provided in Section E.

Aggregated Computation The above quantities are defined per-sample, requiring |D| com-
parisons for each computation. This can still be costly for large state spaces. To mitigate
this, we introduce a lighter aggregated computation, obtained by summing the values per la-
bel. For example,

∑
x∈D min(|EC

max(L←)x|, |SEC
x | − |EC(L→)x|) can be transformed in

min(
∑

x∈D |EC
max(L←)x|,

∑
x∈D |SEC

x | −
∑

x∈D |EC(L→)x|). The trade-off is precision versus
efficiency: the sample version is more accurate but computationally intensive, while the aggregated
version can be pre-computed once per label, reducing the cost to a single comparison per quantity at
the expense of precision (see Section C for details).

2.3.2 Estimate Paths

In this section, we estimate the maximum score achievable by concatenating additional concepts
to a label. If the explanation length were unbounded, this maximum would converge to 1, making
the heuristic uninformative. However, compositional explanations are inherently bounded, as long
explanations would not aid user understanding; in practice, the maximum length is typically small
(e.g., 3). This boundedness allows us to produce tighter estimates. Given a label L, our goal
is to estimate the numerator and denominator in Theorem 2.1 for all possible paths obtained by
concatenating additional concepts through logic operators. To this end, we introduce the maximum
and minimum improvement. For each sample, we extract the top− n and bottom− n values for each
quantity and compute cumulative sums into the Top and Bott vectors, starting from the largest or

3For example, “cat AND NOT dog” is always true, and the AND NOT side does not add meaningful
information to the explanation.

5

smallest values, respectively. For example, Topk(IC)x represents the cumulative sum of the common
intersection values of the k concepts with the highest scores for that quantity. These quantities,
combined with Observation 1 and the equations in Section 2.3.1, allow us to compute the maximum
and minimum factors for OR, AND, and AND NOT exclusive paths (i.e., paths where only one
operator is used from that point onward to concatenate additional concepts):

|Imin(L)x| =


max(|ICmin(L)x|+ |IUmin(L)x|, Bott1(I

C)x +Bott1(I
U)x) OR Path

0 AND Path
|IUmin(L)x| AND NOT Path

(10)

|Imax(L)x| =


min(|ICmax(L)x|+ Topt(I

C)x, |NC
x |)

+min(|IUmax(L)x|+ Topt(I
U)x, |NU

x |) OR Path
min(|ICmax(L)x|, T op1(IC)x) AND Path
|IUmax(L)x|+min(|ICmax(L)x|, |NC

x | −Bott1(I
C)x) AND NOT Path

(11)

(12)

|Unionmin(L)x| = |Nx|+


max(|EC

min(L)x|+ |EU
min(L)x|,

Bott1(E
C)x +Bott1(E

U)x) OR Path
0 AND Path
|EU

min(L)x| AND NOT Path

(13)

|Unionmax(L)x| = |Nx|+



min(|EC
max(L)x|+ Topt(E

C)x, |SEC
x |)

+min(|EU
max(L)x|+ Topt(E

U)x, |SEU
x |) OR Path

min(|EC
max(L)x|, T op1(EC)x) AND Path

|EC
max(L)x|+min(|EU

max(L)x|,
|SEC

x | −Bott1(E
C)x) AND NOT Path

(14)

where t denotes the difference between the maximum length and the length of the label L. To
estimate the values for paths involving multiple operators, we take the maximum and minimum
of each quantity across the operators considered (see Section E.3 for a discussion about explicitly
modeling every possible combination). Among the paths, we also include the final path, computed by
Theorem 2.1, to denote the case where the label is not further expanded.

These estimates are finally used to compute the maximum and the minimum dIoU:

dIoUmax =

∑
x∈D |Imax(L)x|∑

x∈D |Unionmin(L)x|
dIoUmin =

∑
x∈D |Imin(L)x|∑

x∈D |Unionmax(L)x|
(15)

Aggregated Computation As in Section 2.3.1, the aggregated computation estimates the quan-
tities more efficiently by operating on aggregate values (i.e., sums) per label instead of com-
puting them on a per-sample basis. For example, rather than using |Unionsample

max (L)x| =
|Nx| + min(|EC

max(L)x|, T op1(EC)x) the aggregated formulation uses |Unionaggr
max(L)| = N +

min(
∑

x∈D |EC
max(L)x|, T opA1 (EC)), where TopA is computed concept-wise.

2.4 Optimal Algorithm

The optimal algorithm is a best-first search guided by our proposed heuristic. We provide a textual
overview of the main steps below and a more detailed discussion and pseudocode in Section C.

1. Compute the exact quantities (Section 2.2) for every concept in the dataset.
2. For each concept, compute dIoUmax and dIoUmin for all possible paths starting from it,

using the heuristic aggregated computation.
3. Initialize the frontier with all paths whose estimated dIoUmax is greater than the global

maximum of the minimum estimates.

6

Table 2: Average number of visited, expanded, and estimated nodes, along with runtime per unit (in
minutes), by the optimal algorithm, a beam search guided by our heuristic, and two alternative beam
search algorithms.

Algorithm Optimal Visited Expanded Estimated Time (sec)
Low Complexity

Optimal (our) ✓ 1 100 778 0.08
Beam + Our H. ✗ 1 11 405 0.09
MMESH Beam ✗ 135 14.94 716 10.01
Vanilla Beam ✗ 716 14.94 - 2.77

Intermediate Complexity

Optimal (our) ✓ 1 2885 1.76×106 69.27
Beam + Our H. ✗ 1.94 11 24730 9.46
MMESH Beam ✗ 41.94 15 37978 37.31
Vanilla Beam ✗ 37979 15 - 450

High Complexity

Optimal (our) ✓ 47.36 3.54 ×105 1.28×108 5768
Beam + Our H. ✗ 5.82 11 28947 139
MMESH Beam ✗ 44.98 13.47 53774 ± 2 106
Vanilla Beam ✗ 53775 13.47 - 5929

4. Iteratively pop nodes from the frontier, starting from those with the highest estimated
dIoUmax.

(a) If the estimate is aggregated, refine it by computing the sample-based estimate and
reinsert the node. Otherwise, proceed to the next step.

(b) If the node path is not a final one (i.e., can still be extended), expand its label by
concatenating every possible concept with every allowed connective. For each new
label, compute dIoUmax and dIoUmin via the heuristic aggregated computation and
insert them into the frontier.

(c) If the node path is a final one, compute its exact IoU. During this step, the algorithm
stores the intermediate quantities of the sub-labels composing the label. This infor-
mation is then backpropagated to the frontier: nodes that share sub-labels with the
evaluated node update their estimates using these exact quantities.

(d) Continue until the frontier is empty. During the process, whenever a new maximum
of the dIoUmin estimates is found, prune the frontier by removing all nodes whose
dIoUmax falls below this threshold.

Additionally, to reduce redundant computation, the algorithm incorporates a limited set of logical
equivalence rules, which are applied before and during the expansion phase, and maintains a buffer
to cache recently explored nodes associated with the same estimated dIoUmax. We discuss these
details and justify the design choices in Section C.

3 Analysis

3.1 Feasibility of Optimality and Heuristic-Guided Beam Search

This section evaluates the feasibility of the proposed optimal algorithm and the effectiveness of
the heuristic when used to guide beam search. We consider three scenarios that vary in annotation
complexity: low, moderate, and high. The low-complexity setting (Cityscapes [3]) includes a small
number of concepts (25), all of which are disjoint. The moderate-complexity setting (the extended
version of Ade20K [21]) includes a much larger number of concepts (847) but with no overlapping
annotations. Finally, the high complexity setting (Broden [1]) involves frequent overlaps combined
with a large number of concepts (1198). As reference baselines, we include the MMESH-guided

7

Table 3: Average number of changed explanations and percentage of explanations falling into
categories 1, 2, and 3 for different models.

Dataset Diff Beam IoU Optimal IoU Cat 1 (%) Cat 2 (%) Cat 3 (%)
ResNet 8% 0.077 0.083 85 4 11
AlexNet 22% 0.045 0.047 93 3 4
DenseNet 39% 0.039 0.041 73 0 27

beam search [11] and the vanilla beam search [14]. The beam search variant that uses our heuristic
(Beam + Our H.), replaces MMESH with label-quantity estimation (see Section D for details). For
each setting, we report the average number (over 50 units) of visited nodes (i.e., those for which
the exact IoU is computed), expanded nodes, estimated nodes, and the computation time per unit
(std. dev. can be found in Section B). Following Mu and Andreas [14], we extract 50 random units
of the last convolutional layer in a ResNet [7] model trained on Places365 [20] and use the highest
activations (top 0.005 percentile) as activation ranges.

Table 2 shows that the optimal algorithm consistently finds the optimal solution within feasible
runtimes across all scenarios. As expected, informed beam search methods are faster, since they
explore a much smaller portion of the state space (i.e., estimated nodes). However, the performance of
the optimal algorithm remains comparable to the vanilla beam search of Mu and Andreas [14], even
in the most complex settings. Importantly, the number of expanded states is a small fraction of the
overall state space (less than 0.1%) and is significantly smaller than the number of estimated states.
This property is crucial for refining heuristic estimates without compromising runtime efficiency (see
Section C).

More notably, beam search guided by our heuristic outperforms all baselines across all settings in
terms of visited states while achieving comparable or better runtimes. Compared to MMESH, our
approach offers several improvements. First, MMESH relies on annotations during beam expansion,
which requires annotations to be kept in memory and GPU resources, thus limiting scalability and
parallelization. Conversely, our variant uses annotations only when visiting states, allowing them
to be loaded from disk on demand. This design, combined with its higher efficiency, removes the
need to store annotations in memory and enables easier parallelization in low-resource scenarios. Our
beam variant also scales efficiently with changes in hyperparameters. For example, when varying
explanation length (3,5,10, and 20) and beam size (5, 10, and 20) in the moderate settings, the
runtime of our variant is stable between 0.16 and 0.18 min/unit. By contrast, MMESH slows down
progressively with both explanation length [0.62, 1.28, 4.55, > 240] and beam size [0.62, 1.24,
> 240], starting from 0.62 for 3-concepts explanations and beam size fixed to 5 to 4.5 min/units
(see Table 5 for a table of results). For explanation lengths or beam sizes higher than 10, MMESH
becomes infeasible, despite the limited complexity of the considered settings.

3.2 Explanation Analysis

This section addresses the question we originally posed about beam search–based algorithms: are
the explanations they compute optimal? In general, the answer is no. Although beam search often
identifies valid explanations, our analysis (Table 3) shows that between 10% and 40% of them differ
from the optimal ones across several models studied in previous literature [14]. We classify these
differences into three categories: (1) explanations differ in both concepts and IoU, (2) explanations
involve the same concepts but differ in how they are connected, resulting in different IoU, and (3)
explanations share the same IoU but differ in the way the concepts are connected.

The first category is the most prominent and often involves explanations connected by AND and AND
NOT operators, suggesting that beam search struggles to express explanations that describe units
specialized in recognizing complex scenarios. This discrepancy does not imply that the explanations
produced by beam search are incorrect; they still capture meaningful alignments between the unit
and the concepts expressed in the formulas. However, they often fall short of reflecting the highest
degree of alignment that the unit actually exhibits. The second category includes cases where the
optimal explanations are more precise and more aligned (e.g., from ((table OR sink) AND white-c)
(IoU=0.036) to ((white-c AND table) OR sink) (IoU=0.040)). These differences are small and,

8

in this case, we can consider the beam search explanations quite close and faithful to the optimal
explanations.

Finally, the third category includes cases where the semantics of the explanations changes. For
example, consider the explanation ((ball_pit-s OR flower) AND NOT dining_room-s). At first glance,
one might interpret this unit as being specialized in recognizing ball_pit not located in dining rooms.
However, inspecting the dataset reveals that these concepts never co-occur (i.e., they are disjoint),
whereas there are instances including both flowers and dining rooms. Thus, part of the explanation
is effectively “unverified”. In contrast, the optimal algorithm correctly identifies the alignment as
((flower AND NOT dining_room-s) OR ball_pit-s) and exposes a key limitation of beam search:
it cannot backtrack on earlier decisions, and the search may compensate for errors by producing
explanations that rely on unverified scenarios (further details and examples for 10 units per model are
provided in Section F).

3.3 Algorithm Analysis: Insights and Limitations

This section briefly discusses the key design choices behind the optimal algorithm and provides
insights into its limitations.

Overall, the beam search guided by our heuristic represents a safe choice when the reduced time
for computation is a priority. Conversely, the optimal algorithm represents a first promising step
towards the guarantee of optimality on neural explanations and a better choice when the optimality is
considered more important than the time of execution. Regarding design choices, Section C includes
a detailed discussion of them. In summary, all the quantities and steps proposed in this algorithm are
necessary for the search to be tractable in high complexity scenarios. For example, we use aggregated
computations to decide which nodes enter the frontier and sample-based ones to parse it, since
estimated nodes far outnumber those actually expanded. Importantly, nodes added to the frontier may
still be pruned if their estimated IoU falls below the best found so far. Backpropagation and minimum
estimation are crucial in this setting, since they reduce redundant nodes and prevent exhaustive
exploration of overestimated candidates. By empirically analyzing the algorithm’s execution traces,
we identified the following insights and areas of improvement for future research:

Convergence Towards Breath-first search We noted that the state space is explored similarly to
breadth-first search, since the top vector dominates the search and roughly overestimates the maximum
improvement. In theory, this reliance could make it infeasible for long explanations (although shorter
explanations are generally preferred). To mitigate this problem, future research could explore vectors
that are (1) specific to a label (which is costly) or (2) novel and better representations of the maximum
improvement.

Unmeaningful Units Our algorithm could become much slower when either a unit is not inter-
pretable (the IoU < 0.04 [2]) or it is unspecialized (using default rules) and the probing dataset is
of high complexity. In these extreme cases, the space to be explored is very large since there is no
clear alignment and the combinations of concepts are all similar. One possible solution is to run
beam search and then refine the units deemed interpretable for optimality. Alternatively, one could
automatically switch from the optimal algorithm to beam search once the frontier grows too large,
and use the beam search output to initialize and guide the optimal search.

4 Conclusion

This paper presents the first attempt to guarantee optimality in compositional explanations. Specifi-
cally, we identified and formalized the fundamental quantities governing spatial alignment, proposed
a heuristic to estimate the potential alignment from any label in the search space, and developed an
algorithm capable of computing optimal compositional explanations within feasible runtimes. We
further demonstrated that our heuristic can also improve existing beam search–based approaches
for non-optimal explanations. Since our method does not rely on spatial information, the proposed
heuristic is broadly applicable across domains. Moreover, our theoretical contribution may extend
beyond neural explanations, as bitwise computations are of interest in areas such as semantic seg-
mentation and communication. Finally, we call for further research on refining this heuristic and on
designing new algorithms for computing alternative forms of compositional explanations.

9

5 Reproducibility Statement

To ensure reproducibility, we will release the code upon acceptance. Additionally, we describe all
the assumptions of this work in Section 2.1 and Section 2.2. The full pseudo-code for both the
optimal algorithm and the beam search guided by our heuristic is provided in Section C and Section D.
Proofs and derivations of the estimations are given in Section 2.2, Section 2.3.1, and Section 2.3.2
and Sections A and E. We detail the rationale behind design choices in Section C and provide
example outputs of our algorithm in Section F. These examples can serve as gold references when
re-implementing the algorithm. Finally, we describe the datasets and additional setup information in
Section B.

References
[1] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying

interpretability of deep visual representations. In Computer Vision and Pattern Recognition,
2017.

[2] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba. Understanding the role
of individual units in a deep neural network. Proceedings of the National Academy of Sciences,
2020. ISSN 0027-8424. doi: 10.1073/pnas.1907375117. URL https://www.pnas.org/
content/early/2020/08/31/1907375117.

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[4] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds,
R. Lasenby, D. Drain, C. Chen, R. Grosse, S. McCandlish, J. Kaplan, D. Amodei, M. Wattenberg,
and C. Olah. Toy models of superposition. Transformer Circuits Thread, 2022.

[5] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep
network. 2009.

[6] R. Harth. Understanding Individual Neurons of ResNet Through Improved Compositional
Formulas, pages 283–294. Springer International Publishing, 2022. ISBN 9783031092824. doi:
10.1007/978-3-031-09282-4_24.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778. IEEE,
2016.

[8] E. Hernandez, S. Schwettmann, D. Bau, T. Bagashvili, A. Torralba, and J. Andreas. Natural lan-
guage descriptions of deep features. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=NudBMY-tzDr.

[9] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[11] B. La Rosa, L. H. Gilpin, and R. Capobianco. Towards a fuller understanding of neurons with
clustered compositional explanations. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=51PLYhMFWz.

[12] S. M. Makinwa, B. La Rosa, and R. Capobianco. Detection accuracy for evaluating composi-
tional explanations of units. In AIxIA 2021 - Advances in Artificial Intelligence, pages 550–563.
Springer International Publishing, 2022. doi: 10.1007/978-3-031-08421-8_38.

10

https://www.pnas.org/content/early/2020/08/31/1907375117
https://www.pnas.org/content/early/2020/08/31/1907375117
https://openreview.net/forum?id=NudBMY-tzDr
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://openreview.net/forum?id=51PLYhMFWz

[13] R. Massidda and D. Bacciu. Knowledge-driven interpretation of convolutional neural net-
works. In Machine Learning and Knowledge Discovery in Databases, pages 356–371. Springer
International Publishing, 2023. doi: 10.1007/978-3-031-26387-3_22.

[14] J. Mu and J. Andreas. Compositional explanations of neurons. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[15] A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization: Uncovering the
different types of features learned by each neuron in deep neural networks. Visualization for
Deep Learning workshop, ICML 2016, Feb. 2016.

[16] T. Oikarinen and T.-W. Weng. CLIP-dissect: Automatic description of neuron representations
in deep vision networks. In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iPWiwWHc1V.

[17] T. Oikarinen and T.-W. Weng. Linear explanations for individual neurons. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=WIbntm28cM.

[18] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill, 2(11), nov 2017. doi:
10.23915/distill.00007.

[19] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019.

[20] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million image
database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[21] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through
ade20k dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, July 2017. doi: 10.1109/cvpr.2017.544.

A Proof Equivalence Alignment-IoU Score

Proof. Let ML be the binary label tensor representing the result of the bitwise logic operations
induced by the logic operators connecting single concepts k ∈ L. The Intersection over Union (IoU)
score is then defined as:

IoU(N , L,D,ML) =
|N ∩ML|
|N ∪ML|

(16)

We first observe that |N ∩ML| is necessarily equal to
∑

x∈D |IU (L)x| + |IC(L)x|. Indeed, all
elements in |N ∩ML| are associated with both the neuron and the label L. Consider a generic
element j ∈ |N ∩ML|. Since the logic operators are 00-preserving (Assumption 2), this element
must be associated with at least one annotation of one of the concepts in L. But if the element is
associated with at least a concept, then it is either associated with exactly one, and thus j ∈ IU , or
with multiple concepts, and thus j ∈ IC . This also holds in the case of concepts connected by the
AND NOT operator, because by design this operator must be chained to a positive concept, and AND
NOT is 00-preserving.

Regarding the denominator, we can note that

|N ∪ML| = |N |+ |ML| − |N ∩ML| (17)

Observe that for all j ∈N ∩ML, the contribution |ML| − |N ∩ML| = 0, since these elements are
counted in both sets. Hence, |ML| − |N ∩ML| represents the number of elements that are labeled
as 1 in ML but for which the neuron does not fire. This definition coincides with Definition 2.4.
Therefore, we can rewrite the denominator as

|N ∪ML| = |N |+
∑
x∈D

|E(L)x|. (18)

11

https://openreview.net/forum?id=iPWiwWHc1V
https://openreview.net/forum?id=WIbntm28cM
https://openreview.net/forum?id=WIbntm28cM
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Table 4: Average number of visited, expanded, and estimated nodes, along with runtime per unit (in
minutes). Statistics are computed across three settings and datasets: low complexity (Cityscapes),
intermediate complexity (Ade20K Full), and high complexity (Broden). The table reports results for
our two proposed algorithms, the beam search powered by MMESH, and the vanilla beam search.

Algorithm Optimal Visited Expanded Estimated Time (sec)
Low Complexity

Optimal (our) ✓ 1 100 ± 34 778 ± 221 0.08 ± 0.01
Beam + Our H. ✗ 1 ± 0.30 11 ± 0.42 405 ± 25 0.09 ± 0.01
MMESH Beam ✗ 135 ± 3 14.94 ± 0.42 716 ± 17 10.01 ± 0.30
Vanilla Beam ✗ 716 ±17 14.94 ± 0.42 - 2.77 ± 0.16

Intermediate Complexity

Optimal (our) ✓ 1 2885 ± 2583 1.76×106 69.27 ± 40.60
Beam + Our H. ✗ 1.94 ±0.24 11 24730 ± 1090 9.46 ± 0.38
MMESH Beam ✗ 41.94 ±156 15 37978 ± 1.79 37.31 ± 2.87
Vanilla Beam ✗ 37979 ± 1.74 15 - 450 ± 10

High Complexity

Optimal (our) ✓ 47.36 ± 99.27 3.54 ×105 1.28×108 5768 ± 1297
Beam + Our H. ✗ 5.82 ± 6.47 11 28947 ± 2261 139 ± 23
MMESH Beam ✗ 44.98 ± 69.11 13.47 ± 4.54 53774 ± 2 106 ± 18
Vanilla Beam ✗ 53775 ± 1 13.47 ± 4.54 - 5929 ± 548

Similarly to the numerator case, because the logic operators are 00-preserving, every element in
E(L)x is either included in EU (L)x or in EC(L)x. Thus,

|N ∪ML| = |N |+
∑
x∈D

(
|EU (L)x|+ |EC(L)x|

)
. (19)

and thus
dIoU(N , L,D, IC , IU , EU , EC) = IoU(N , L,D,M). (20)

B Complete Results

Table 4 reports the averages and standard deviations of the results presented in Table 2. Table 5 shows
differences in scalability between beam search guided by our proposed heuristic and beam search
guided by MMESH. Both tables are computed over 50 units randomly extracted from the penultimate
layer of a ResNet18 model trained on Places365, consistent with prior work on compositional
explanations [14, 6, 12, 11]. We follow Bau et al. [2] and Mu and Andreas [14] and use the highest
activations corresponding to the top 0.005 percentile across the probing dataset as the activation
range and fix the maximum explanation length to 3. As probing datasets, we used Cityscapes
[3] (accessible at: https://www.cityscapes-dataset.com/ under MIT License) for the low
complexity settings, Ade20kFull [21] (accessible via the Detectron2 [19] framwork) for the moderate
settings, and Broden [1] (accessible at https://github.com/CSAILVision/NetDissect under
MIT license) for the highest complexity settings. All results were computed on a workstation equipped
with an NVIDIA GTX 3090 GPU, without parallelization, in order to avoid timing overhead.

C Optimal Algorithm

This sections describe the optimal algorithm we introduced in the main paper. Algorithm 1 shows the
pseudocode of our algorithm. The optimal algorithm is a best-first search guided by our proposed
heuristic and consists of the following steps:

12

https://www.cityscapes-dataset.com/
https://github.com/CSAILVision/NetDissect

Table 5: Avg. Time across 50 units (min) per hyperparameters on moderate settings.

Value Our MMESH
Explanation Len

3 0.16 0.62
5 0.16 1.28
10 0.17 4.55
20 0.18 > 240

Beam Size
5 0.16 0.62
10 0.17 1.24
20 0.18 > 240

1. Compute the exact quantities (Section 2.2) for every concept in the dataset (line 5).
2. For each concept, compute dIoUmax and dIoUmin for all possible paths starting from it,

using the heuristic aggregated computation (line 6).
3. Initialize the frontier with all paths (line 7) and keep track of the greatest dIoUmin (line 8).

The frontier is sorted by the estimated dIoUmax.
4. Reduce the frontier by removing nodes whose estimated dIoUmax is lower than the global

maximum of the minimum estimates (line 10).
5. Iteratively pop nodes from the frontier, starting from those with the highest estimated dIoU

(lines 11-12).
(a) If the estimate is aggregated, refine it by computing the sample-based estimate and

reinsert the node (lines 13-20). Otherwise, proceed to the next step.
(b) Apply logical equivalence rules when possible (lines 21-26), recompute the sample-

based estimate for the equivalent expression, and reinsert the node if the estimate has
changed. Otherwise, proceed to the next step. Currently, we only check distributive
properties as logical equivalences. Note that even though the expressions are logically
equivalent, their estimates may differ due to overestimation. The goal of this step is to
select the form with the smallest overestimation among all possible equivalents.

(c) Check whether the same node has been recently explored by comparing its maximum
IoU with the most recent one. If they match but the node has not yet been explored,
add it to memory; if it has already been explored, skip it. Otherwise, clear the memory
and initialize the most recent IoU with the node’s maximum IoU (lines 27–38).

(d) If the node is not a final one (i.e., can still be extended), expand its label by concatenat-
ing every possible concept with every allowed connective (line 49). For each new label,
compute dIoUmax and dIoUmin via the heuristic aggregated computation and insert
them into the frontier (lines 50-51). If a new maximum is found among dIoUmin of
the new paths, update the global maximum and reduce the frontier (lines 52-55).

(e) If the node is a final one, compute its exact IoU (line 42). During this step, the algorithm
stores the intermediate quantities of the sub-labels composing the label (line 40). This
information is then backpropagated to the frontier: nodes that share sub-labels with the
evaluated node update their estimates using these exact quantities (line 41). If the IoU
is greater than that of the best label found so far, update the best label with the current
node (lines 43–45).

(f) Continue until the frontier is empty (line 11).

In the following, we provide the rationale behind several design choices made during the development
of this algorithm.

Memory Mechanism The memory mechanism (lines 27–38) was introduced to account for logical
equivalences not handled elsewhere in the algorithm and to prevent redundant computation. We
considered several alternatives, but this solution proved to be the least computationally expensive.

13

Without such a mechanism, some logically equivalent rules could be expanded multiple times (lines
49–55), leading to a significantly larger search space. Alternative options would be to check for
logical equivalences or the presence of a node directly when adding nodes to the frontier. However,
this would make exploration prohibitively expensive: verifying logical equivalence or membership
would offset the efficiency gains of the heuristic. In addition, since the frontier is implemented as
a heap, checking whether a node is already present is slower than with a sorted list. Maintaining a
sorted frontier would require re-sorting on every insertion, which would be too costly and therefore
infeasible.

Concept Quantities A key design choice concerns the handling of concept quantities. We store
quantities only for atomic concepts and do not cache them when estimating (lines 6, 14, and 50) or
computing the dIoU (line 40). Consequently, the intermediate quantities of labels are recomputed
multiple times during the search. This decision was made for two main reasons. First, storing
additional quantities increases access time, which is critical because the algorithm frequently accesses
these values; this overhead could easily exceed the time required to recompute them from scratch.
Second, caching more quantities increases memory usage, potentially limiting the ability to run
parallel processes. Given the substantial runtime required for the most complex datasets, preserving
the ability to parallelize is essential. Moreover, avoiding extensive caching keeps the approach
lightweight in terms of memory and resource requirements. In conclusion, the marginal gains from
more precise estimations are outweighed by the overhead, especially given that the algorithm tends to
converge toward a breadth-first search (Section 3.3).

Backpropagation This process was introduced to reduce the number of visited states. While it
has no (or bad) impact on low and moderate-complexity settings, it significantly reduces runtime in
high complexity scenarios, especially when running on CPUs. Specifically, the frontier in the later
stages of the search often contains similar explanations that differ only in the last added concept (e.g.,
(A AND B) OR C) and (A AND B) OR D). These nodes typically appear in the frontier because
the left-hand terms provide a rough overestimation relative to the current maximum. When a node
is visited, this overestimation is temporarily corrected, and the backpropagation step updates the
estimates of all remaining nodes. This correction helps the algorithm to avoid visiting unpromising
states. On average, 2000–3000 nodes per unit are updated via backpropagation, highlighting the
importance of this mechanism.

Sample vs Aggregated Computation The optimal algorithm leverages both sample-based and
aggregated computations for path and label estimations. This design is necessary due to the large
state space and the overestimation introduced by the aggregated computation. We explored several
alternatives during the development of this work, but this trade-off is the only one that ensures
feasibility in high complexity settings. As explained in the main text, sample computation requires
|D| comparisons per calculation, whereas aggregated computation relies solely on the sum of concept
quantities computed at the first step of the algorithm, combining them in a single operation. These
two approaches represent a trade-off between precision and efficiency: the sample version is more
accurate but computationally intensive, while the aggregated version is faster but less precise. In
practice, using only aggregated computation for both node expansion and frontier exploration would
yield faster per-node computations but result in a frontier that is orders of magnitude larger than that
explored by our combined approach. Conversely, using only sample computation slightly reduces the
frontier (by roughly 50,000 nodes per unit in preliminary experiments) but incurs significantly higher
computation time per node, effectively nullifying the gains from the smaller frontier.

MinIoU As explained previously, the algorithm computes both the minimum and maximum IoU
for each label and path. This increases the time required per estimation, since the maximum and
minimum calculations are distinct and rarely share terms, effectively doubling the computation time
per node. An alternative design could omit the MinIoU computation and explore only nodes whose
maximum IoU exceeds the best visited so far. However, without the MinIoU, it becomes impossible
to dynamically reduce the frontier at runtime: the frontier can only grow, and the only way to remove
a single node is to fully explore it. This would result in a frontier orders of magnitude larger than
the one explored by the proposed design, especially in the early phase of the search, when the
MinIoU is updated multiple times and allows significant pruning. Future work could explore adaptive
strategies that decide dynamically whether to compute MinIoU based on the search space or external
information, potentially improving overall runtime.

14

Code Optimization In addition to the previously mentioned design choices, we implemented
several code optimizations to avoid unnecessary computation of quantities and to handle logical
equivalences. For instance, we enforce an order on concept indices when chaining two consecutive
applications of the same operator during node expansion. For example, for a concept with index 10,
it can only be chained with concepts having an index greater than 10, since all other combinations
will be captured when expanding nodes with lower indices. The same rule applies to consecutive
operators of the same type. For example, if we have (3 OR 15), we can only chain concepts with
indices greater than 15 when applying the OR operator again (e.g., (3 OR 15) OR 18), while we
are free to choose any concept for other operators (AND or AND NOT). Other code optimizations
involve avoiding the computations of paths when the intersection of the right or left sides is 0 and
avoiding the sample computation related to equations involving Bott1 in datasets where this vector is
always 0 (see Section E)

D Beam Search Algorithm

In this section, we provide a high-level description of the beam search guided by our heuristic and
present its pseudo-code in Algorithm 2. This algorithm replaces the MMESH heuristic [11] with the
label quantity estimates introduced in Section 2.2, within a standard heuristic-guided beam search
framework. The procedure begins by following the initial two steps of the optimal algorithm but
keeps only the best b concepts to form the initial beam. It then proceeds iteratively for n steps: at
each iteration, the algorithm expands the nodes in the current beam, sorts the resulting state space
according to the heuristic, and evaluates candidate nodes by computing their IoU . The top b nodes
are then selected to form the next beam. The process terminates when no candidate improves the
current best IoUmax, or when no nodes remain to be expanded or visited. Differently from the
optimal algorithm, this algorithm relies solely on sample computations and does not make use of, or
estimate, the paths introduced in Section 2.3.2. Beyond the advantages discussed in Section 3.1, our
heuristic does not rely on spatial information and can therefore be applied across multiple domains
without requiring modifications to the code or formulation.

E Estimating Quantities

This section presents the rationale and derivation of all estimations computed by our heuristic. We
divide the discussion into per-sample estimations and aggregated computations.

E.1 Sample Computation

E.1.1 Label Quantities

In the following, we derive the estimations of the label quantities introduced in the main text for the
sample-based computation. For clarity, we group the equations by operator and discuss each operator
separately. Because the quantities for the unique elements are exact and are directly derived from the
definition and Observation 1, here we focus on the derivation of the common quantities.

|ICmin(L)x| = max(|ICmin(L←)x|, |IC(L→)x|) (21)

|ICmax(L)x| = min(|ICmax(L←)x|+ |IC(L→)x|, |NC
x |) (22)

|EC
min(L)x| = max(|EC

min(L←)x|, |EC(L→)x|) (23)

|EC
max(L)x| = min(|EC

max(L←)x|+ |EC(L→)x|, |SEC
x |) (24)

Derivation Equations (21) to (24) for the OR operator: We can start by noting that Equation (21)
corresponds to the case where one side is a subset of the other. In this case, the equation gives the
maximum cardinality of the intersection between the left and right sides, since the minimum elements
are already included in the maximum and the OR is 1-preserving (i.e., the number of ones cannot
be lower than before the combination). Conversely, Equation (22) corresponds to the case where
the sides are disjoint in their extras, adjusted by the |NC

x | quantity. Indeed, because the left side
is an overestimation, it may happen that the sum exceeds the limits, requiring readjustment using
|NC

x |. The estimation of the maximum and minimum extras follows the same reasoning, with the

15

only difference that the common space extra |SEC
x | is used to adjust the quantity of the maximum

extras.

|ICmin(L)x| = max(|ICmin(L←)x|+ |IC(L→)x| − |NC
x |, 0) (25)

|ICmax(L)x| = min(|ICmax(L←)x|, |IC(L→)x|) (26)

|EC
min(L)x| = max(|EC

min(L←)x|+ |EC(L→)x| − |SEC
x |, 0) (27)

|EC
max(L)x| = min(|EC

max(L←)x|, |EC(L→)x|) (28)

Derivation Equations (25) to (28) for the AND operator: In this case, the AND operator is 0-
preserving. Therefore, when computing the minimum, we consider the scenario where a guaranteed
overlap (i.e., both sides equal to 1) occurs. This happens when the sum of the two sides exceeds the
maximum available space, represented by |NC

x | and |SEC
x |, respectively. In such cases, the minimum

guaranteed overlap is given by the difference between the sum and the cardinality of the available
space. In all other cases, the best estimation we can provide is simply 0. The computation of the
maximum corresponds to the case of fully overlapping concepts. Since the operator is 0-preserving,
the equation in this case selects the minimum of the two sides for each sample.

|ICmin(L)x| = max(|ICmin(L←)x| − |IC(L→)x|, 0) (29)

|ICmax(L)x| = min(|ICmax(L←)x)|, |NC
x | − |IC(L→)x|) (30)

|EC
min(L)x| = max(|EC

min(L←)x| − |EC(L→)x|, 0) (31)

|EC
max(L)x| = min(|EC

max(L←)x|, |SEC
x | − |EC(L→)x|) (32)

Derivation Equations (29) to (32) for the AND NOT operator: This operator behaves like the AND
operator but combines a negated concept, flipping all the bits in the corresponding vectors. The
maximum estimations follow the same reasoning as for the AND operator, except that in this case
|NC

x | − |IC(L→)x| and |SEC
x | − |EC(L→)x| represent the bits that were originally 0 and are now

1, corresponding to the common intersection and the common extras of the negated concept. The
minimum estimation corresponds to the case where the right side fully overlaps with the left side. In
this case, due to the negation, all overlapping bits flip to 0. Since the AND operator is 0-preserving,
this results in the loss of all left side elements shared with the right side.

E.1.2 Path Quantities

In the following, we derive the estimations of the path quantities introduced in the main text. For
clarity, we group the equations by operator and discuss each operator separately. Note that we assume,
for all the paths, that at least 1 concept is added to the label, since the case where no concepts are
added is covered by the “final path” obtained by applying Theorem 2.1 to the label quantities. In all
the following equations, t denotes the difference between the maximum length and the length of the
label L.

|Imin(L)x| = max(|ICmin(L)x|+ |IUmin(L)x|, Bott1(I
C)x +Bott1(I

U)x) (33)

|Imax(L)x| = min(|ICmax(L)x|+Topt(I
C)x, |NC

x |)+min(|IUmax(L)x|+Topt(I
U)x, |NU

x |) (34)

|Unionmin(L)x| = |Nx|+max(|EC
min(L)x|+ |EU

min(L)x|, Bott1(E
C)x +Bott1(E

U)x) (35)

|Unionmax(L)x| =|Nx|+min(|EC
max(L)x|+ Topt(E

C)x, |SEC
x |)

+min(|EU
max(L)x|+ Topt(E

U)x, |SEU
x |)

(36)

Derivation of Equations (33) to (36) for the OR operator: Equation (33) and Equation (35) follow
the same derivation as Equations (21) and (23). In this case, the added concept is represented
by Bott1(I

C), which corresponds to the minimum intersection of any concept in a given sample
and reflects the case of fully overlapping concepts. In practice, for most datasets, this quantity is
always equal to 0; thus, it reduces to |ICmin(L)x| + |IUmin(L)x|. The same reasoning applies to
|Unionmin(L)x| and the extras. Note also that the label quantities can be lower than the bottom
values, since they represent combinations of concepts that may further reduce these quantities. Finally,

16

the maximum quantities correspond to the case where the concepts included in L are disjoint from
those cumulated in the Top vectors. In this situation, the quantities are simply the sum of neuron
activations, maximum quantities, and the Top vectors, adjusted by the available space |NU

x | and
|SEU

x |, respectively.

|Imin(L)x| = 0 (37)

|Imax(L)x| = min(|ICmax(L)x|, T op1(IC)x) (38)
|Unionmin(L)x| = |Nx| (39)

|Unionmax(L)x| = |Nx|+min(|EC
max(L)x|, T op1(EC)x) (40)

Derivation Equations (37) to (40) for the AND operator: This operator is simpler to derive. Specifi-
cally, Equations (25) and (27) corresponds to the case where the label and all the concepts included
in the Top vectors are disjoint, and thus all the quantities reduce to 0. Conversely, Equation (39)
and Equation (40) represent the case where the label fully overlaps with the quantities stored in
Top1. Therefore, for the AND operator, only the quantities from the smaller concept are preserved
per sample. Note that Top1 is the only applicable Top vector here, since higher indices sum the
cardinality of multiple concepts, which would violate the operations defined by the AND operator.

|Imin(L)x| = |IUmin(L)x| (41)

|Imax(L)x| = |IUmax(L)x|+min(|ICmax(L)x|, |NC
x | −Bott1(I

C)x) (42)

|Unionmin(L)x| = |Nx|+ |EU
min(L)x| (43)

|Unionmax(L)x| = |Nx|+ |EC
max(L)x|+min(|EU

max(L)x|, |SEC
x | −Bott1(E

C)x), (44)

Derivation Equations (41) to (44) for the AND NOT operator: Equations (29) and (31) corresponds
to the same case as in Equations (25) and (27). However, since the AND NOT operator preserves
all unique elements (Observation 1), the minimum intersection corresponds to the minimum unique
intersection of the label, and the minimum union includes the minimum unique extras. Conversely,
Equations (43) and (44) represents the case where the label fully overlaps with the negated concept,
represented by |NC

x |−Bott1(I
C)x and |SEC

x |−Bott1(E
C)x, respectively. As previously noted, in

practice, for most datasets, Bott1 is always equal to 0. Thus, the equations simplify to |IUmax(L)x|+
|ICmax(L)x| for the intersection and |Nx| + |EC

max(L)x| + |EU
max(L)x| for the union, since by

definition |ICmax(L)x| < |NC
x | and |EU

max(L)x| < |SEC
x | due to the fact that |NC

x | represents the
total neuron common space and |SEC

x | represents the total available space for common extras.

E.2 Aggregated Computation

This section describes the aggregated computation of the common quantities. To improve readability,
we shorten the notation

∑
x∈D to simply

∑
, since there are no ambiguities and the summation is

used exclusively for this purpose.

E.2.1 Label Quantities

In the case of disjoint concepts, we can use the same equation as in the sample-based case described in
Section 2.3.1, since these are already aggregated. For the common quantities, the modification consists
of pre-computing the aggregate value per label rather than per sample. This requires computing
the dataset-wide sum only for atomic concepts, while all higher-arity labels can be derived through
arithmetic operations over these sums. Therefore:

|ICmin(L)x| =


min(

∑
|ICmin(L←)x|,

∑
|IC(L→)x|) if ⊕ = OR

max(
∑
|ICmin(L←)x|+

∑
|IC(L→)x| − |NC |, 0) if ⊕ = AND

max(
∑
|ICmin(L←)x| −

∑
|IC(L→)x|, 0) if ⊕ = AND NOT

(45)

|ICmax(L)x| =


min(

∑
|ICmax(L←)x|+

∑
|IC(L→)x|, |NC |) if ⊕ = OR

min(
∑
|ICmax(L←)x|,

∑
|IC(L→)x|) if ⊕ = AND

min(
∑
|ICmax(L←)x)|, |NC | −

∑
|IC(L→)x)| if ⊕ = AND NOT

(46)

17

|EC
min(L)x| =


max(

∑
|EC

min(L←)x|,
∑
|EC(L→)x|) if ⊕ = OR

max(
∑
|EC(L←)x|+

∑
|EC(L→)x| − |SEC |, 0) if ⊕ = AND

max(
∑
|EC

min(L←)x| −
∑
|EC(L→)x|, 0) if ⊕ = AND NOT

(47)

|EC
max(L)x| =


min(

∑
|EC

max(L←)x|+
∑
|EC(L→)x|, |SEC |) if ⊕ = OR

min(
∑
|EC

max(L←)x|,
∑
|EC(L→)x|) if ⊕ = AND

min(
∑
|EC

max(L←)x|, |SEC | −
∑
|EC(L→)x|) if ⊕ = AND NOT

(48)

The derivation of these quantities follows the same rationale as the sample computation, and the only
difference is the larger overestimation produced by the aggregation of label-wise quantities.

E.2.2 Path Quantities

Similarly to the sample-based computation, computing the path dIoU requires estimating the max-
imum possible improvement. In this case, however, the TopA and BottA vectors are computed
concept-wise rather than per sample. Specifically, for each quantity, we sort the values of all in-
dividual concepts in the dataset and compute cumulative sums into the TopA and BottA vectors,
starting from the largest and smallest values, respectively. Substituting these into the equations of the
sample-based computation, we obtain:

Imin(L) =


max(

∑
|ICmin(L)x|+

∑
|IUmin(L)x|,

BottA1 (I
C) +BottA1 (I

U)) OR Path
0 AND Path∑
|IUmin(L)x| AND NOT Path

(49)

Imax(L) =



min(
∑
|ICmax(L)x|+ TopAt (I

C), |NC |)+
min(

∑
|IUmax(L)x|+ TopAt (I

U), |NU |) OR Path
min(

∑
|ICmax(L)x|, T opA1 (IC)) AND Path∑

|IUmax(L)x|+min(
∑
|ICmax(L)x|,

|NC | −BottA1 (I
C)) AND NOT Path

(50)

|Unionmin(L)| = |N |+


max(

∑
|EC

min(L)x|+
∑
|EU

min(L)x|,
BottA1 (E

C) +BottA1 (E
U)) OR Path

max(
∑
|EC

min(L)x|+BottA1 (E
C)− |SEC |, 0) AND Path∑

|EC
min(L)x| AND NOT Path

(51)

|Unionmax(L)| = |N |+



min(
∑
|EC

max(L)x|+ TopAt (E
C), |SEC |)

+min(
∑
|EU

max(L)x|+ TopAt (E
U), |SEU |) OR Path

min(
∑
|EC

max(L)x|, T opA1 (EC)) AND Path∑
|EC

max(L)x|+min(∑
|EU

max(L)x|, |SEC | −BottA1 (E
C)) AND NOT Path

(52)

The derivation of these quantities follows the same rationale as the sample computation case,
and the only difference is that these represent a larger overestimation. However, note in this
case |Unionmin(L)| can be greater than 0, unlike in the sample computation where ∀x ∈ D,
Bott1(E

C)x = 0, except in the rare degenerate case (not observed in any of the datasets tested in
this paper) where a single sample contains all concepts in the dataset.

E.3 Path Combinations

As in the previous section, we shorten here the notation
∑

x∈D to simply
∑

. As mentioned in the
main text, to estimate values for paths involving multiple operators, we select the maximum and
minimum of each quantity across the operators considered. For example, when both OR and AND
can appear along a path, we compute:

dIoUmax(OR,AND)x =
max(

∑
|IOR

max(L)x|,
∑
|IAND

max (L)x|)
min(

∑
|UnionOR

min(L)x|,
∑
|UnionAND

min (L)x|)
(53)

18

and

dIoUmin(OR,AND)x =
min(

∑
|IOR

min(L)x|,
∑
|IAND

min (L)x|)
max(

∑
|UnionOR

max(L)x|,
∑
|UnionAND

max (L)x|)
(54)

These expressions simplify to:

dIoUmax(OR,AND)x =

∑
|IOR

max(L)x|∑
|UnionAND

min (L)x|
(55)

and

dIoUmin(OR,AND)x =

∑
|IAND

min (L)x|∑
|UnionAND

max (L)x|
(56)

We can further rewrite them as:

dIoUmax(OR,AND)x =

min(|ICmax(L)x|+ Topt(I
C)x, |NC

x |) +min(|IUmax(L)x|+ Topt(I
U)x, |NU

x |)
|Nx|

(57)

and
dIoUmin = 0 (58)

Now, let us consider the case where we explicitly design this combined quantity. As before, we
observe that dIoUmin = 0. For the numerator, however, we can refine the estimation: including an
AND operator at any step will, by design, remove all the unique quantities of the current label. Thus:

dIoUmax(OR,AND) =
min(|ICmax(L)x|+ Topt(I

C)x, |NC
x |) + Topt(I

U)x
|Nx|+ (|EC

max(L)x|+ |Bott1(EC)x| − |SEC
x |

(59)

However, since |Bott1(E
C)x| is 0 in most datasets, the denominator reduces to |Nx|. Thus, the only

practical difference lies in the numerator, where the |IUmax(L)x| term is missing. However, in general,
Topt(I

U)x is much larger than |IUmax(L)x|, since it includes the maximum per sample across all
concepts in the dataset. This makes the difference between dIoU

(OR,AND)
max (from explicit design)

and our proposed simplification relatively small. Similar observations can be made for all the other
combinations of the operators considered in this paper.

From a practical perspective, and given that the optimal algorithm often converges toward breadth-
first exploration (Section 3.3), the gain of the refined design is marginal. Conversely, our simplified
approach, based on combining the values of exclusive paths of operators, scales more efficiently
and facilitates future extensions. Indeed, new logic operators can be incorporated into the optimal
algorithm simply by providing their estimates for the exclusive path.

F Examples of Explanations Difference

This section presents examples of the differences between explanations computed by beam search
and those obtained with the optimal algorithm. The examples are not cherry-picked; rather, they
correspond to the first ten differing explanations for the last convolutional layer of each explained
model (ResNet18 [7], AlexNet [10], and DenseNet [9]). All the models have been pretrained on the
Place365 dataset.

#RESNET18

Uni t 30
M−MESH:
((ba lcony − i n t e r i o r −s OR c o n t r o l _ t o w e r − indoo r −s) OR d i n e t t e −home−s)
(0 . 0 8 7)
Opt imal : ((t a b l e AND dining_room −s) OR balcony − i n t e r i o r −s) (0 . 1 0 0)

Un i t 39
M−MESH: ((bed AND NOT black −c) OR p i l l o w) (0 . 0 4 3)
Opt imal : ((p i l l o w OR poo l t a b l e) OR swimming poo l) (0 . 0 4 7)

19

Uni t 41
M−MESH: ((b u t c h e r s _ s h o p −s OR r u b b l e −s) OR meat) (0 . 0 6 9)
Opt imal : ((pink −c AND mounta in) OR b u t c h e r s _ s h o p −s) (0 . 0 6 9)

Un i t 45
M−MESH: ((house AND NOT manufactured_home −s) OR r o o f) (0 . 1 6 3)
Opt imal : ((house AND NOT garage − ou tdoor −s) OR r o o f) (0 . 1 6 3)

Un i t 56
M−MESH: ((t a b l e AND dining_room −s) OR lamp) (0 . 0 4 5)
Opt imal : ((t a b l e OR c h a i r) AND dining_room −s) (0 . 0 5 1)

Un i t 70
M−MESH: ((bed OR b a l l _ p i t −s) OR p i l l o w) (0 . 0 6 1)
Opt imal : ((bed AND NOT brown −c) OR b a l l _ p i t −s) (0 . 0 6 1)

Un i t 87
M−MESH: ((a l l e y −s OR c o r r i d o r −s) AND NOT w a l l) (0 . 0 7 9)
Opt imal : ((f l o o r AND c o r r i d o r −s) OR a l l e y −s) (0 . 0 9 1)

Un i t 94
M−MESH: ((p l a n t OR f i e l d) AND green −c) (0 . 0 2 8)
Opt imal :
((swimming_pool − indoo r −s OR r o p e _ b r i d g e −s) OR hedge_maze −s) (0 . 0 2 9)

Un i t 100
M−MESH: ((s i n k OR c o u n t e r t o p) OR b a t h t u b) (0 . 1 0 3)
Opt imal : ((m i r r o r OR s i n k) AND bathroom −s) (0 . 1 0 5)

Un i t 109
M−MESH: ((a r t _ g a l l e r y −s OR drawing) AND NOT c e i l i n g) (0 . 2 3 1)
Opt imal : ((p a i n t i n g AND museum− indoor −s) OR a r t _ g a l l e r y −s) (0 . 2 3 8)

ALEXNET

Uni t 2
M−MESH: ((f l o o r AND yel low −c) OR ba l l room −s) (0 . 0 4 3)
Opt imal : ((ye l low −c OR a i r p o r t _ t e r m i n a l −s) AND f l o o r) (0 . 0 5 2)

Un i t 3
M−MESH: ((l i g h t OR podium − indoor −s) OR f l u o r e s c e n t) (0 . 0 5 0)
Opt imal : ((green −c AND c e i l i n g) OR l i g h t) (0 . 0 5 3)

Un i t 20
M−MESH: ((p e r s o n AND NOT black −c) AND NOT brown −c) (0 . 0 2 9)
Opt imal : ((grey −c OR whi te −c) AND p e r s o n) (0 . 0 2 9)

Un i t 21
M−MESH: ((road AND s t r e e t −s) AND NOT whi te −c) (0 . 0 2 8)
Opt imal : ((wai t ing_room −s OR poolroom −home−s) AND f l o o r) (0 . 0 3 1)

Un i t 22
M−MESH: ((c e i l i n g AND l i v i n g _ r o o m −s) AND NOT black −c) (0 . 0 4 1)
Opt imal : ((bedroom −s OR l i v i n g _ r o o m −s) AND c e i l i n g) (0 . 0 4 7)

Un i t 26
M−MESH: ((poo l t a b l e OR b a l l _ p i t −s) OR d a y _ c a r e _ c e n t e r −s) (0 . 0 3 7)
Opt imal : ((p u r p l e −c AND c e i l i n g) OR poo l t a b l e) (0 . 0 3 8)

20

Uni t 29
M−MESH: ((p a t h OR p l a t f o r m) OR f o r e s t _ r o a d −s) (0 . 0 3 1)
Opt imal : ((whi te −c AND p e r s o n) OR p a t h) (0 . 0 3 5)

Un i t 31
M−MESH:
((s k y s c r a p e r AND NOT b u i l d i n g _ f a c a d e −s) OR downtown −s) (0 . 0 5 8)
Opt imal : ((b lue −c AND s k y s c r a p e r −s) OR s k y s c r a p e r) (0 . 0 6 4)

Un i t 37
M−MESH: ((c e i l i n g AND black −c) OR pagoda −s) (0 . 0 5 3)
Opt imal : ((b l ack −c OR red −c) AND c e i l i n g) (0 . 0 5 9)

Un i t 48
M−MESH: ((bed AND NOT brown −c) AND NOT black −c) (0 . 0 5 0)
Opt imal : ((whi te −c OR blue −c) AND bed) (0 . 0 5 1)

DENSENET161

Uni t 1
M−MESH: ((t r e e AND grey −c) OR s k i _ r e s o r t −s) (0 . 0 2 6)
Opt imal : ((grey −c OR blue −c) AND t r e e) (0 . 0 2 8)

Un i t 3
M−MESH: ((d rawer OR b o x i n g _ r i n g −s) AND NOT c a b i n e t) (0 . 0 7 4)
Opt imal : ((d rawer AND NOT c a b i n e t) OR b o x i n g _ r i n g −s) (0 . 0 7 4)

Un i t 4
M−MESH: ((t e n t OR b a t t e r s _ b o x −s) AND NOT g r a s s) (0 . 0 2 8)
Opt imal : ((e a r t h AND b a t t e r s _ b o x −s) OR t e n t) (0 . 0 3 0)

Un i t 5
M−MESH: ((mounta in AND blue −c) AND NOT c o a s t −s) (0 . 0 3 8)
Opt imal : ((b lue −c OR highway −s) AND mounta in) (0 . 0 3 9)

Un i t 7
M−MESH: ((f l o o r AND black −c) OR swimming poo l) (0 . 0 2 1)
Opt imal : ((b l ack −c OR blue −c) AND f l o o r) (0 . 0 2 2)

Un i t 8
M−MESH: ((f l o o r AND bedroom −s) OR f o r e s t _ r o a d −s) (0 . 0 1 2)
Opt imal : ((bedroom −s OR s u p e r m a r k e t −s) AND f l o o r) (0 . 0 1 3)

Un i t 9
M−MESH: ((bakery −shop −s OR s co nc e) OR l i g h t h o u s e) (0 . 0 2 6)
Opt imal : ((food OR s c on ce) OR p a t t y) (0 . 0 2 7)

Un i t 15
M−MESH: ((ha rbo r −s OR hay) AND NOT sky) (0 . 0 2 3)
Opt imal : ((ha rbo r −s AND NOT sky) OR hay) (0 . 0 2 3)

Un i t 22
M−MESH: ((a t t i c −s AND NOT f l o o r) AND NOT bed) (0 . 0 4 7)
Opt imal : ((w a l l OR c e i l i n g) AND a t t i c −s) (0 . 0 5 4)

Un i t 24
M−MESH: ((d rawer AND NOT grey −c) AND NOT whi te −c) (0 . 0 4 3)
Opt imal : ((t a b l e AND bedroom −s) OR drawer) (0 . 0 4 5)

21

Algorithm 1: Optimal Algorithm
Input: L1, N , M, DisjointMatrix, length
Output: BestLabel,BestIoU

1 Frontier← empty priority queue
2 ConceptQuantities, Memory← empty lists
3 MinIoU, RecentIoU← 0
4 for ck,i in L1 do
5 ConceptQuantities[ck,i]← compute_quantities(ck,i,M,N)
6 Paths← estimate_aggregate_paths(ConceptQuantities[ck,i], length, MinIoU)
7 Frontier.add(Paths)
8 MinIoU← update_min(Paths, MinIoU)
9 end

10 Frontier← reduce_frontier(Frontier,MinIoU)
11 while Frontier is not empty do
12 Node← Frontier.pop()
13 if Node is aggregate_estimation then
14 UpdatedNode← compute_sample_estimate(Node,MinIoU)
15 MinIoU← update_min(UpdatedNode, MinIoU)
16 if UpdatedNode.max_iou > MinIoU then
17 Frontier.add(UpdatedNode)
18 end
19 continue
20 end
21 UpdatedNode← apply_logic_equivalences(Node)
22 if UpdatedNode.max_iou < Node.max_iou and UpdatedNode.max_iou > MinIoU then
23 MinIoU← update_min(UpdatedNode, MinIoU)
24 Frontier.add(UpdatedNode)
25 continue
26 end
27 if Node.iou == RecentIoU then
28 if Node in Memory then
29 continue
30 end
31 else
32 Memory.add(Node)
33 end
34 end
35 else
36 Memory← empty list
37 RecentIoU← Node.max_iou
38 end
39 if Node is final then
40 TreeQuantities = compute_tree_quantities(Node)
41 Frontier← update_by_tree(Frontier, TreeQuantities)
42 IoU = compute_iou(TreeQuantities.get(Node)
43 if IoU > BestIoU then
44 BestIoU = IoU
45 BestLabel = Node.label
46 end
47 end
48 else
49 AdditionalNodes← expand(Node)
50 Paths← estimate_aggregate_paths(AdditionalNodes, Quantities,

length,MinIoU)
51 Frontier.add(Paths)
52 if min(Paths) > MinIoU then
53 MinIoU← min(Paths)
54 Frontier← reduce_frontier(Frontier, MinIoU)
55 end
56 end
57 end
58 return BestLabel, BestIoU

22

Algorithm 2: Our Informed Beam Search Algorithm
Input: L1, N , M, DisjointMatrix, b, length
Output: BestLabel,BestIoU

1 Beam← empty list
2 ConceptsQuantities← empty list
3 for ck,i in L1 do
4 Quantities← compute_quantities(ck,i,N ,M)
5 ConceptsQuantities.append(Quantities)
6 IoU← compute_dIoU(Quantities)
7 Beam.add(label = ck,i, iou = IoU)
8 end
9 sort(Beam) # Sort by IoU

10 # Select the best b candidates
11 Beam← Beam[:b]
12 MinIoU← find_min(Beam)
13 for 2 to length do
14 SearchSpace← expand_beam(Beam,L1)
15 Estimations← estimate_labels_iou(SearchSpace, ConceptQuantities, ,

DisjointMatrix)
16 sort(Estimations)
17 for L, EstIoU in Estimations do
18 if EstIoU < MinIoU then
19 # All the other labels cannot be added to the beam
20 break
21 end
22 Iou← compute_iou(L,N ,M)
23 Beam.add(label=L, iou=Iou)
24 end
25 sort(Beam)
26 # Select the best b candidates
27 Beam← Beam[:b]
28 # Compute and update info
29 MinIoU← find_min(Beam)
30 end
31 BestLabel, BestIoU← max(Beam)
32 return BestLabel, BestIoU

23

	Introduction
	Optimal Compositional Explanations
	Background and Related Work
	Fundamental Quantities
	Heuristic
	Estimate Label Quantities
	Estimate Paths

	Optimal Algorithm

	Analysis
	Feasibility of Optimality and Heuristic-Guided Beam Search
	Explanation Analysis
	Algorithm Analysis: Insights and Limitations

	Conclusion
	Reproducibility Statement
	Proof Equivalence Alignment-IoU Score
	Complete Results
	Optimal Algorithm
	Beam Search Algorithm
	Estimating Quantities
	Sample Computation
	Label Quantities
	Path Quantities

	Aggregated Computation
	Label Quantities
	Path Quantities

	Path Combinations

	Examples of Explanations Difference

