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Abstract

Neurons are the fundamental building blocks of deep neural networks and their
interconnections allow Al to achieve unprecedented results. Motivated by the goal
of understanding how neurons encode information and what they learn, compo-
sitional explanations leverage logical relationships between concepts to interpret
neuron behavior. However, these explanations rely on human-annotated datasets,
restricting their applicability to specific domains and predefined concepts. This
paper addresses this limitation by introducing a framework that allows users to
probe neurons for arbitrary concepts and datasets. Specifically, the framework
leverages masks generated by open vocabulary semantic segmentation to compute
open vocabulary compositional explanations. The proposed framework consists of
three steps: specifying arbitrary concepts, generating semantic segmentation masks
using open vocabulary models, and deriving compositional explanations from these
masks. The paper compares the proposed framework with previous methods for
computing compositional explanations, analyzes the differences in explanations
when shifting from human-annotated data to model-annotated data, and showcases
the additional capabilities provided by the framework in terms of flexibility of the
explanations with respect to the tasks and properties of interest.

1 Introduction

The black-box nature of deep neural networks (DNNs) remains an important limitation for their
adoption in fields, such as healthcare, finance, and autonomous systems, where understanding the
rationale behind model behaviors is essential for trust and accountability [10]. In particular, the
opacity of the learning process in DNNs makes it difficult to gain insights into what these models
learn and to guarantee the correctness of their behavior. To address this problem, several works have
focused on methods to explain the knowledge encoded in DNNs and, in particular, on what individual
neurons learn during the training process [25, 160, 3} 51} I5]. Among them, this paper focuses on
methods that explain neurons’ learned knowledge in the vision domain by associating logical rules
with each neuron. The state-of-the-art in this area is represented by compositional explanations [44],
which express the alignment between the locations of a given neuron activation range and the location
of concepts through propositional logic formulas. For example, ((Cat AND White) OR Dog) can be
associated with a neuron whose activations overlap with the locations of white cats or dogs within the
images. This approach has been improved over time, including more complex spatial relations [22],
knowledge bases [41], and multiple activation ranges [29].
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Despite the progress, one of the main limitations of this family of methods is their dependency
on concept-annotated datasets [54} 144]]. Specifically, for each concept, these explanations require
annotations that identify its precise locations in all samples within the probing dataset. This annotation
process is conducted by humans, making it both costly and prone to inconsistencies. On a practical
level, only a limited number of concept-annotated datasets are available in the literature. This scarcity
imposes several limitations, such as the closed-world assumption, where the model can only be
evaluated on concepts present in these few datasets. Consequently, concepts that are not annotated, or
concepts with a different level of granularity, may be ignored.

This paper addresses the dependency on human annotations by proposing a framework that
leverages open vocabulary semantic segmentation models. These models have recently been
proposed to segment any object in images, even those not seen during training, by combining
traditional segmentation architectures with foundational models [53]. Specifically, our framework
is training-free and relies only on a user-specified list of concepts, without requiring any manual
annotations. Based on these concepts, optionally organized into different concept sets, the proposed
framework generates segmentation masks by using open vocabulary semantic segmentation models
and computes compositional explanations based on the generated masks. This framework offers
several advantages, such as enabling explanation generation independent of human-annotated data,
supporting explanations at varying levels of granularity, improving explanations through iterative
refinements, and compatibility with the open-world assumption, where there are no constraints on the
concepts a user can probe the neurons for.

In detail, the paper’s contribution is threefold:

* it proposes the first framework that supports open vocabulary compositional explanations
in the vision domain. Compared to previous methods, the framework achieves comparable
performance on datasets with human annotations, while also offering greater flexibility, and
better quantitative and qualitative results on datasets without human annotations;

* it investigates the differences between explanations derived from human and model-
annotated data and analyzes the sources of these differences in terms of misalignment
and granularity levels;

* it showcases, through two application scenarios, the advantages of the proposed framework in
supporting multiple explanation granularity levels and iterative improvement of explanations
through refinements.

We will release the code upon acceptance.

2 Related Work

Open Vocabulary Semantic Segmentation The task of semantic segmentation aims to identify
semantic regions in an image based on predefined classes of interest. Open vocabulary semantic
segmentation aims to achieve this goal by replacing pre-defined classes with textual descriptions,
including ones not encountered during training [34]]. Existing approaches can be categorized into two
main groups: zero-shot segmentation approaches [4,165]], which typically rely on word embeddings
to align image features with unseen classes, and approaches that leverage pre-trained multi-modal
models [53] to encode both text and images in a shared embedding space and identify the combination
of segmented regions and text that maximizes their alignment [30} [72| 36} |66]. Within the second
group, we can further distinguish between two-stage approaches [34} [70]], which first generate
class-agnostic masks and then assign labels to them using multi-modal models, and end-to-end
approaches [[11}72], which integrate multi-modal models earlier in the pipeline to simultaneously
identify regions of interest and assign labels. These approaches differ in the placement of the multi-
modal model within the pipeline and the training procedures (e.g., alignment losses) used to adapt
the models for the segmentation task. Our framework is agnostic to the specific open vocabulary
segmentation model employed. However, in this paper, we focus primarily on end-to-end approaches,
as they offer greater flexibility in adapting masks to different concept granularity (e.g., whole objects
versus object parts).

Neuron Explanations Neuron explanations aim to decode the behavior of individual units within a
neural network and understand the knowledge they learn. Different categories of methods have been



proposed [[7,21] to decode different behaviors. Among the most popular, we cite: feature visualization
methods [17} 49} 146], multimodal-based methods [24, 47} 48], and Sparse Auto Encoders (SAE) to
decode entire layer activations [? ? ].

In this paper, we focus on a different family of neuron explanations: logic and alignment-based
explanations. These explanations aim to find the combination of concepts that maximizes the
alignment between the locations of a given neuron activation range and the locations of those
concepts. These combinations aim to capture a high degree of polysemantic behavior (i.e., the
phenomenon where neurons can fire for multiple unrelated concepts [[16]). The seminal work in
this area is Network Dissection [2} 3], which has been extended by [44], leading to compositional
explanations. These explanations map neuron activations to logical connections between recognized
concepts, expressing relationships between them. Relationships explored in the literature, typically
expressed as logical operators, include co-occurrence [2], exclusion [44], relative position [22], and
hierarchy [41]]. Despite the progress, one of the main limitations of this family of methods is their
dependency on concept-annotated datasets [54]], limiting their applicability [44] and making them
costly in terms of human labor. The framework proposed in this paper falls into this last paradigm
and addresses the dependency on human annotations. Our approach is related to [3]], which employs a
segmentation model trained on the probing dataset to identify the individual concept (among the ones
it has been trained on) that maximizes the overlap between annotations and activations. Differently
from them, we leverage open segmentation models, thus removing the requirement to train on the
probing dataset, support multiple granularities, and extract logical combinations of concepts. The
support for different concept granularity also generalizes the approach proposed in [41], which
leverages an ontology to infer partial annotations at a higher level of granularity (e.g., from “caf” to
“animal’). In contrast, our framework supports refinements in granularity toward both higher and
lower levels.

3 Framework

LetD = {xy, 22, ..., 7, } be a probing dataset, where each input image {x € R*"*’} has (variable)
height / and width w. Let z be a neuron to be explained in a probed model. Let C be a concept
set specified by the user, including concepts that may or may not be present in the probing dataset,
and £" be the set of all possible logical connections of arity at maximum n between concepts in
the concept set C, where concepts are chained by propositional logic connectives. Compositional
explanations aim to assign to z the logical combination L € £" of concepts in C (e.g., ((Cat OR Dog)
AND Brown)) that maximizes the alignment between the localization of a given neuron’s activation
range and the localization of the concepts within the probing dataset. The goal of our framework
is to achieve this objective without requiring humans to manually annotate the location of every
concept in the probing dataset while offering more flexibility to the user. We can distinguish three
steps: identifying the concept set, generating segmentation masks, and generating compositional
explanations.

Concept Set Identification. In our framework, the concept set C corresponds to a collection of m
concept subsets

(C:{Clw--acm} (1)

where each subset C}; consists of a list of nj concepts
Ck:{ck’l,...,ck’nk}, Vke{l,...7m} 2
subjectto  C; N C;0, Vi # j 3)

Equation (3) represents the constrain that the concept sets do not share concept names, and it is
necessary to avoid inconsistency in mask generation. The concepts are arbitrary and specified by the
users. Each concept subset can be used to describe different levels of concept granularity (e.g., object
names, abstractness, colors, parts, shapes, etc.).

Masks Generation. Given the probing dataset I, a pretrained open vocabulary segmentation model
f(-,-), and a concept subset C}, € C, the framework generates a set of segmentation masks

Sp={sVjeD:s = f(al,Cr)} )



where each element in s/ corresponds to the concept most likely represented by the pixel at the same
position in x. The specific operations performed by the function f(,-) depend on the implemen-
tation of the open vocabulary segmentation model. Our framework is agnostic with respect to this
implementation. The only assumption is that f(-,-) can assign an arbitrary specified concept to each
pixel.

To satisfy the requirement of the compositional explanation algorithm [44]], these masks are upsampled
(or downsampled) to have the same dimensions. Each segmentation mask s? is then transformed into

a set of binarized masks M ék, one for each concept ¢ € Cy:
Mék = {bs(s?, cx,i),Yex,i € Cr} 3)

where b (s7, ¢y ;) is a function that returns a binary mask where the pixels assigned to the concept
ck,; are set to 1, and the others are set to 0. For each concept subset, the binarized masks are then
grouped into a single-granularity binary mask set:

Mg, = {MZ, ,Vj € D} (6)

By aggregating the single-granularity sets for all of the desired granularities, we can obtain the
multi-granularity binary masks set:

My = {Mck,VCk S (C} @)

Explanations Computation. The first step to compute an explanation for a neuron k is to collect
its activations Ay, over the probing dataset:

Ak = {ak,j,Vj S ID)} (8)
The shape of ay ; depends on the neuron type. In general, this shape differs from that of the input
and segmentation masks, and an additional function is needed to project the activation into the proper
dimensional space. Our framework is agnostic to the specific projection. In this paper, we follow the
established literature on the topic [3}44]] by considering bidimensional neurons in the convolutional
layers and using bilinear interpolation to reshape the activations. Given Ay we apply clustering as in
[29] to split the activations into semantic regions and identify multiple activation ranges. Then, given
an activation range [7;, 7], the framework computes the binarized activations A as:

A= {ba(ak,j7 [T’i> Tl])7vj S D} (9)
where b, (ax,j, [T, 71]) is a function that sets to 1 all activation values within the specified range and
to 0 otherwise.

Finally, the framework computes compositional explanations by finding the concepts that maximize
the alignment between the binarized masks A and the concepts’ segmentation masks in M. To
compute these explanations, we apply the recently proposed algorithm [29]] based on a beam search
guided by the MMESH spatial heuristic (see Appx. B for more details). This heuristic exploits
bounding and inscribed boxes to accelerate the beam search. Formally, the algorithm identifies the
label L € £" that maximizes the following objective:

argmax ToU (L, A, M) (10)
Legn
where the Intersection Over Union ({oU) measures the overlap between label annotations and neuron
activations, and it is defined as:
_ [ANGM, L) (11
[AUOM, L)
and 6(M, L) is a function that returns the logical combination of the masks in M of the concepts
involved in the label L. Following [44], we consider AND, OR, and AND NOT as logical connectives,
computed by standard bitwise logical operators between the binary matrices in M. Setting Ml = M,
in eq. results in single-granularity explanations, equivalent to those computed in previous work,
but based on model annotations instead of human ones. Conversely, setting M = M,;; enables the
usage of concepts from all of the granularities. In this case, the algorithm automatically selects the
granularity level that is most aligned with each neuron.

ToU(L, A, M)

After inspecting the explanations computed in this step, the user can optionally refine the concept
set by adding or removing concepts of interest, thus providing more flexibility during the analysis.
Since the framework treats the concept subsets as independent, it regenerates the masks only for the
specific subsets affected by the refinement (i.e., those to which the concepts are added or removed).



4 Experiments

This section introduces the experimental setup (section [A.1]), evaluates the proposed framework
(section[4.2), and analyzes the difference between explanations computed over human and model-
annotated datasets (section [{.3)).

4.1 Setup

In the following sections, we use CAT-Seg [[11] with its default parameters (Appx. I ) as the backbone
open vocabulary segmentation model of our framework. However, our findings are independent of
the specific model choice (see Appx. A). As competitors, we consider alternative ways of computing
compositional explanations: the human baseline (human) [44], relying on human-annotated data,
and a closed vocabulary baseline (Closed). The term “Closed vocabulary” refers to segmentation
models trained on a specific dataset and able to recognize only concepts included in that dataset.
Differently from our framework, the user cannot specify the concepts of interest and this baseline
will generate segmentation masks related exclusively to the concept dataset used during the training
stage. The only related approach in literature is proposed by [3]], but for single-concept explanations.
We update their proposal by extending it to the compositional explanation case and replacing their
model with a state-of-the-art segmentation model (Mask2Former [9]]) trained on COCO [35]]. We do
not include SAE or other open-vocabulary explanation methods (Section[2)) as competitors, as they
pursue different goals and are not designed to capture localization alignment. Evaluating them fairly
would require substantial adaptations beyond the scope of this work.

All competitors share the same experimental settings and hyperparameters, selected as the best found
by prior work (see Appx. I). Namely, we focus on the neurons of the last convolutional layer of the
probed models, we set the maximum explanation length to 3 and the beam size to 5 as in [44], and
we use K-Means to identify five clusters (i.e., activation ranges) in the neuron activations, as in [29].
Regarding terminology, we associate a number with each cluster: the lower the number, the lower the
activations included in that cluster.

4.2 Quantitative and Qualitative Evaluation

The first set of experiments evaluates our proposed framework by measuring the quality of its
generated explanations. Due to space constraints, we report only a subset of our experiments in this
section. A more comprehensive evaluation across six additional human-annotated datasets (Appx.
A.2), four alternative framework implementations (Appx. A.1), and two additional probed models
(Appx. A.3) is included in Appendix A. . To measure explanation quality, we use the per-pixel
metrics adopted by previous literature for evaluating compositional explanations: loU, as defined
in eq. ; Detection Accuracy [40] (DetAcc), which quantifies the percentage of label annotations
recognized within the activation range; and Activation Coverage [29] (ActCov), which measures
the percentage of neuron activations within the annotated label regions. Further details about these
metrics and additional results using other evaluation metrics can be found in Appx. A.4.

We begin our analysis by comparing explanations for 512 neurons in a ResNet18 [23] model trained
on Place365 [76]. In this first experiment, we use the validation split of Ade20k [77] as a probing
dataset because it has been extensively used in literature to evaluate both compositional explanations
and segmentation models and it includes human annotations. We use these annotations as masks for
the human baseline and their labels as a concept set for our framework. The goal of this experiment is
to investigate whether there is a degradation in explanation quality when transitioning from human-
annotated data to model-annotated data. This potential degradation could arise due to imprecision in
the segmentation masks returned by the models or errors in the masks’ labeling process. As shown
in table[T] our framework achieves comparable or better average scores (with std. dev. reported in
Appx. A.1) than the competitors across all of the activation ranges (i.e., clusters) but the lowest
activations (Cluster 1), where scores are slightly worse. However, as noted by [29], the lowest clusters
often include fixed (uninformative) explanations where the algorithm converges when no alignment
is observed. In such cases, the explanations generated by different competitors differ by only one
concept within these degenerate explanations (i.e., the human baseline converges on “building” while
our framework converges on “person”), rendering the differences insignificant. Consequently, we
consider the results in these settings satisfactory, and we do not observe any significant degradation
in explanation quality when using model-annotated data to compute explanations. Although the



Cluster Method Place365
ToU ActCov  DetAcc

1 Human 0.219 0.352 0.369
Closed 0.215 0.341 0.368
Ours 0.212  0.327 0.376

2 Human 0.132 0.322 0.184
Closed 0.130 0.306 0.187
Ours 0.130 0.302 0.188

3 Human 0.102 0.276 0.148
Closed 0.106 0.272 0.155
Ours 0.130 0.302 0.188

4 Human 0.083 0.226 0.139
Closed 0.090 0.241 0.140
Ours 0.090 0.235 0.148

5 Human 0.070 0.183 0.137
Closed 0.065 0.213 0.109
Ours 0.079 0.214 0.139

Table 1: Avg. scores for explanations computed by the competitors for a model trained on the
Place365 dataset probed using Ade20K.

Cluster Method IoU ActCov  DetAcc
1 Human - - -
HumanAdez()k 0.248 0.356 0.451
Closed 0.388 0.635 0.501
Ours 0.357 0.553 0.504
2 Human - - -
Humanpgerox  0.130  0.312 0.185
Closed 0.170  0.505 0.214
Ours 0.173 0.463 0.221
3 Human - - -
Human 0.085 0.228 0.126
Closed 0.142 0453 0.175
Ours 0.147 0.432 0.185
4 Human - - -
Humanpgeoxr  0.063  0.167 0.105
Closed 0.091 0.571 0.100
Ours 0.113 0.356 0.147
5 Human - - -
HumanAdez()k 0.052 0.144 0.100
Closed 0.029 0.674 0.033
Ours 0.077 0.188 0.131

Table 2: Avg. scores for explanations computed by the competitors for a model trained on CUB.

human baseline is applicable when the dataset includes human annotations, our framework remains
useful in these scenarios for generating explanations at a different granularity and providing a deeper
and more flexible interpretation.

Table 2] shows the results for 2048 neurons in a ResNet50 model [59]] trained on CUB [61]] for bird
species classification and using the validation split of CUB as a probing dataset. This setting represents
the task our framework is targeting: we consider the case where no human-annotated relevant masks



Scores  Align Prec  Relev
Places365 Probed Model

Human  3.53 2.98 3.13
Closed 3.10 2.60 3.25
Our 3.53 3.19 3.34

CUB Probed Model

Human 3.17° 3.08° 1.51"
Closed 3.83 3.22 2.59
Our 3.32 3.27 4.30

Table 3: Average Alignment, Precision, and Relevance scores attributed by users to explanations
computed by the competitors. The superscript” indicates that the results are computed on a different
probing dataset.

are availabl For our framework, we identify a multi-granularity concept set obtained through
refinements and task-specific information (see Appx. D). Because there are no human-annotated data,
the human baseline could not be applied, and our framework aims to address this limitation. However,
one could alternatively attempt to probe the model using a different dataset where annotations are
available. To explore this, we consider using Ade20K as a probing dataset for the human baseline
(Human 4 4e20% ). While this provides a point of comparison, we argue this strategy is not optimal and
should be avoided due to several drawbacks (e.g., hallucinations and concept misalignment). In this
case, our framework represents a significantly better choice than alternatives, particularly in
the highest clusters in terms of IoU and DetAcc. A qualitative analysis reveals even more significant
differences. For the human baseline, explanations are often computed over hallucinations of the
probed model when parsing objects in Ade20K not available in CUB (i.e., the dataset used to train
the probed model), leading to artifact alignments. This issue is evident when inspecting the most
aligned concepts in the highest cluster, where we observed hallucinated concepts such as “pool table”
(IoU=0.328) and “car” (IoU=0.22), which are absent and not relevant in CUB. These findings confirm
the limitations of the human baseline when applied to datasets lacking annotations. Regarding the
Closed baseline, it achieves reasonable IoU scores in lower activation ranges because those ranges
capture general concepts (e.g., water, sky), which are shared between CUB and COCO [33], the
dataset used to train this baseline. However, in the higher clusters, its explanations are associated
with abnormally high ActCov and low DetAcc, suggesting that they fail to recognize more specific
concepts. Indeed, the resulting explanations (Appx. K) are associated with concepts (e.g., bird or
animal) that are too general for the given task and fail to highlight relevant information learned by the
probed model (e.g., species, colors).

To qualitatively validate our results, we conducted a user study in which 100 participants were asked
to rate, on a scale from 1 (none) to 5 (all), how many concepts in the explanations generated by
each method were aligned, precise, and relevant. For a randomly sampled set of activation masks
produced by a neuron within a specific activation range, we define a concept as aligned if it appears
in at least a subset of the activated masks; precise if its level of granularity matches that of the
concepts included in the activation masks; and relevant if it is perceived as discriminative for the
given task. The average scores reported in table 3] (with std. dev. and p-values reported in Appx.
G) suggest that our framework is the only one demonstrating consistency across both datasets, thus
confirming its good properties. Indeed, the human baseline performs poorly on the relevance score
in the CUB dataset, as the explanations are based on a probing dataset that includes concepts not
relevant to the task. Conversely, the closed baseline achieves good scores on CUB, likely because
its training data included the concept “bird”, which is a label that is difficult for non-expert users to
penalize (see Appx. G for a detailed analysis of the user study and Fig. 1 in the same appendix for an
example of this problem). However, it fails to provide the appropriate level of granularity in ADE20K
and to identify relevant concepts in CUB, highlighting the lack of flexibility of closed vocabulary
approaches.

'As a result, we do not include the additional data provided by [19] in our experiments.



Segmentor Data: cdplayer

Human Data: videoplayer

Segmentor Data: bannister, banister, balustrade, balusters, handrail

Figure 1: Examples of misalignment between human and model-annotated data due to different
granularity in annotations (top) and the lack of concepts capturing patterns (bottom) in the concept
set.

Open Vocab Multi Granularity
Expl: ((bird's bill OR green bird) OR hummingbird) | 1oU:0.119

Open Vocab Granularity 1
Expl: ({(green bird OR yellow bird) OR hummingbird) | loU:0.107

Open Vocab Granularity 2
Expl: ((bird's back OR bird's crown) OR bird's bill) | IoU:0.101

Figure 2: Explanations associated with neuron #19 and cluster 4 by our framework using different
levels of granularity. In blue are areas of neuron activation within the considered range.

4.3 Explanations Analysis

After validating the explanation quality of the proposed framework, this section analyzes the differ-
ences between explanations computed using open vocabulary and human-annotated data in a dataset
where human annotations are available (Ade20k). The first question we aim to address is whether the
differences in explanation scores arise from the segmentation masks (e.g., due to segmentation errors)
while converging on the same explanation or whether the approaches converge on entirely different
explanations. To explore this aspect, we measure the overlap in the explanation’s concepts between
the two approaches. We find that they share 86%, 91%, 82%, 70%, and 56% of the labels across the
five clusters, respectively. As discussed in the previous section, differences in the lower clusters are



due to the algorithm converging differently on activations that do not align with any concept. More
interesting, however, is the case of the highest activations, where almost half of the explanations differ.
In this case, we observe that the differences stem from misalignment. This phenomenon occurs
when the two approaches converge on the same (or closely related) concept but assign different labels
to it. In some cases, this misalignment can be attributed to hallucinations (e.g., vertical tanks often
labeled as arcade machines). However, these cases are easy to identify by visually inspecting the
samples that activate the explanations. More subtle and frequent cases of misalignment arise from
differences in the concept set and the granularity of segmentations and annotations. For instance, as
shown at the top of fig. |1} a neuron associated with the concept “cdplayer” by the first approach is
associated with “videoplayer” by explanations computed over model-annotated data. Although these
two labels are closely related and likely represent the same underlying object (e.g., a generic “media
player”), the difference in annotation and segmentation granularity results in divergent explanations.
Differently, at the bottom of the same figure, the two approaches converge on different samples and
concepts. However, by visual inspection of these samples, they share highly similar patterns that are
not available, as concepts, in the concept set (see section @])

To measure the extent of these two kinds of misalignment, we leverage the semantic knowledge graph
of WordNet [42] and then measure the extent of co-occurrence between misaligned concepts. Briefly,
we map the concept set to nodes in WordNet and iteratively search for a meaningful hypernym that
generalizes the concepts causing the misalignment. We then remap the dataset’s concept annotations
to the identified hypernym and regenerate the segmentation maps, repeating the process until no
other meaningful hypernym can be found (see Appx. E for further details). However, due to the
incompleteness of the ontology, some misaligned concepts (e.g., cushion and pillow) cannot be
unified through this approach. Regarding co-occurrence, we categorize misaligned concepts into
three groups: hyper-related concepts that co-occur in more than 75% of the samples activating the
explanation, highly related concepts with co-occurrence above 50%, and concepts with low or no
co-occurrence. Through this process, we observe that granularity impacts 12% of the total concepts,
with 4% unifiable through the ontology and 8% hyper-related. The latter includes concepts whose
annotations and segmentations are inconsistent or not aligned in granularity (e.g., traffic light vs road
or mountain vs hill). Finally, 17% are highly related and 19% exhibit low or no co-occurrence. These
represent cases where both approaches struggle due to the limitations of the concept set (similarly
to fig. [I). While this limitation could potentially be mitigated through refinements, some areas
of misalignment (e.g., patterns) need further advancements in semantic segmentation to support
concepts that are highly relevant for explainability but remain underexplored in standard semantic
segmentation settings. In this direction, we identify and discuss these limitations and potential
research directions in Appx. C .

5 Application Scenarios

In this section, we show how we can exploit the proposed framework to improve the explanations
associated with neurons and improve our understanding of what they recognize.

5.1 Supporting Custom Granularity

As described in section [3] our framework supports multiple granularities through the use of concept
subsets. These sets allow the algorithm to adjust explanations to the most aligned granularity.
However, the framework can also be used to study individual neurons at different granularities,
guided by the user. This capability is important because, due to superposition [[16} 50, |15] and the
fixed maximum length of explanations, some concepts aligned to the neuron may not be included
in the explanation if they are weaker than those selected by the algorithm or do not add enough
value to the previously selected concepts. fig. [2]shows multi-granularity explanations and two single-
granularity explanations for a neuron in the CUB model probed in section[d.2] The first individual
granularity represents bird-level concepts (i.e., shapes, colors, and species), while the second one
represents birds’ parts. Although the explanation that includes all of the granularities achieves the
highest score, the analysis of individual granularities provides further insights into the neuron’s
recognition power. In this example, we can derive that the neuron recognizes species and colored
birds as well as specific parts of these birds. This analysis offers the user a more complete picture
of the concepts learned by neurons. Notably, this analysis cannot be supported by the Closed
baseline because it uses only one concept set and can be only partially supported (from lower to



Before Correction
Expl: trade name, brand name, brand, marque | loU: 0.093

After Correction
Expl: shop, store, boutique, retail, outlet | loU: 0.126

Figure 3: An example of how iterative refinements of the concept set can improve open vocabulary
explanations.

higher granularity) when combining ontologies and human-annotated data. Thus, this flexibility
represents an additional advantage of our framework.

5.2 Improving Explanations via Refinements

This section showcases how to improve misaligned explanations by correcting the concept set.
In particular, the goal is to analyze neurons’ activations and explanations, identify possible
misalignments due to the concept set, and fix them by refining the concept set. Specifically,
given an explanation of length n, we isolate the effect of a given concept into the explanation and
we visually compare it with the neuron’s activations not captured by the non-isolated part of the
explanation (see Appx. F for the procedure). Here, we focus on the misaligned labels identified
in section[4.3] For example, as shown in fig. 3] when examining neuron 1, we observed that this
neuron appears to represent concepts such as “shop” or “window shop”. However, the probing dataset
(Ade20K) does not include labels for these concepts, causing both the human baseline and our method
to converge on related concepts (e.g., trader name). To address this problem, we added the missing
concepts to the concept set and re-generated the masks for our framework. It is important to note
that in this process, the user is not correcting the explanations but the concept set. This means that
when the user suggests a concept not aligned with the neuron’s activation, the segmentation model
will still identify the new concept, but the compositional algorithm will discard it since it would be
less aligned to the activation than the previous concepts. This ensures that the neuron explanation is
faithful even if the concept set is modified. Figure [3|shows that, after the refinement, the framework
includes new concepts in the explanations and the updated explanations reach higher IoU scores than
before. This means that the updated explanations are better aligned with the neuron activations or,
equivalently, that the framework more accurately captures the alignment of the neuron activations.
Finally, note that these improvements are not possible when using closed vocabulary segmentation
models and require extensive and costly human labor to both annotate and fix the consistency of
annotations in the human-based approaches.

6 Conclusion

In this paper, we introduced a novel framework to compute open vocabulary compositional expla-
nations, addressing one of the main limitations of compositional explanations: their dependency
on human-annotated datasets. We demonstrated that our framework produces explanations that are
comparable to or outperform previous approaches, while offering greater flexibility and broader ap-
plicability. We also call for further research in semantic segmentation to better support explainability
tasks. Finally, future research directions could explore more advanced relationships between concepts,
adapt the framework to different domains, and develop adaptive mechanisms to automatically identify
the most suitable concept set for a given task.

10



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

L. Barsellotti, R. Amoroso, M. Cornia, L. Baraldi, and R. Cucchiara. Training-free open-
vocabulary segmentation with offline diffusion-augmented prototype generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying
interpretability of deep visual representations. In Computer Vision and Pattern Recognition,
2017.

D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba. Understanding the role
of individual units in a deep neural network. Proceedings of the National Academy of Sciences,
2020. ISSN 0027-8424. doi: 10.1073/pnas.1907375117. URL https://www.pnas.org/
content/early/2020/08/31/1907375117,

M. Bucher, T.-H. VU, M. Cord, and P. Pérez. Zero-shot semantic segmentation. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
0266e33d3£546cb5436a10798e657d97-Paper . pdf.

K. Bykov, L. Kopf, S. Nakajima, M. Kloft, and M. Hohne. Labeling neural representations with
inverse recognition. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems, volume 36, pages 24804—24828.
Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/4e52bbb99690d1e05c7ef7b4c8b3569a-Paper-Conference. pdf,

H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuff: Thing and stuff classes in context. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

S. Casper, T. Rauker, A. Ho, and D. Hadfield-Menell. Sok: Toward transparent Al: A survey
on interpreting the inner structures of deep neural networks. In First IEEE Conference on
Secure and Trustworthy Machine Learning, 2023. URL https://openreview.net/forum?
1d=8C5zt-0Utdn!

J. Cha, J. Mun, and B. Roh. Learning to generate text-grounded mask for open-world semantic
segmentation from only image-text pairs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 11165-11174, June 2023.

B. Cheng, 1. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar. Masked-attention mask
transformer for universal image segmentation. 2022.

T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P. Way,
E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman, W. Xie, G. L. Rosen, B. J. Lengerich,
J. Israeli, J. Lanchantin, S. Woloszynek, A. E. Carpenter, A. Shrikumar, J. Xu, E. M. Cofer, C. A.
Lavender, S. C. Turaga, A. M. Alexandari, Z. Lu, D. J. Harris, D. DeCaprio, Y. Qi, A. Kundaje,
Y. Peng, L. K. Wiley, M. H. S. Segler, S. M. Boca, S. J. Swamidass, A. Huang, A. Gitter,
and C. S. Greene. Opportunities and obstacles for deep learning in biology and medicine.
Journal of The Royal Society Interface, 15(141):20170387, Apr. 2018. ISSN 1742-5662. doi:
10.1098/rsif.2017.0387.

S. Cho, H. Shin, S. Hong, A. Arnab, P. H. Seo, and S. Kim. Cat-seg: Cost aggregation for
open-vocabulary semantic segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4113-4123, June 2024.

M. Contributors. MMCV: OpenMMLab computer vision foundation. https://github.com/
open-mmlab/mmcv, 2018.

M. Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and bench-
mark. https://github.com/open-mmlab/mmsegmentation, 2020.

11


https://www.pnas.org/content/early/2020/08/31/1907375117
https://www.pnas.org/content/early/2020/08/31/1907375117
https://proceedings.neurips.cc/paper_files/paper/2019/file/0266e33d3f546cb5436a10798e657d97-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0266e33d3f546cb5436a10798e657d97-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4e52bbb99690d1e05c7ef7b4c8b3569a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4e52bbb99690d1e05c7ef7b4c8b3569a-Paper-Conference.pdf
https://openreview.net/forum?id=8C5zt-0Utdn
https://openreview.net/forum?id=8C5zt-0Utdn
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmsegmentation

[14] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[15] M. Dreyer, E. Purelku, J. Vielhaben, W. Samek, and S. Lapuschkin. Pure: Turning polysemantic
neurons into pure features by identifying relevant circuits. arXiv preprint arXiv:2404.06453,
2024.

[16] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds,
R. Lasenby, D. Drain, C. Chen, R. Grosse, S. McCandlish, J. Kaplan, D. Amodei, M. Wattenberg,
and C. Olah. Toy models of superposition. Transformer Circuits Thread, 2022.

[17] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep
network. 2009.

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html, 2012.

[19] R. Farrell. Cub-200-2011 segmentations, 2022.

[20] G. Ghiasi, X. Gu, Y. Cui, and T.-Y. Lin. Scaling open-vocabulary image segmentation with
image-level labels. In ECCV, 2022.

[21] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explanations:
An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference
on Data Science and Advanced Analytics (DSAA). IEEE, oct 2018. doi: 10.1109/dsaa.2018.
00018.

[22] R. Harth. Understanding Individual Neurons of ResNet Through Improved Compositional
Formulas, pages 283-294. Springer International Publishing, 2022. ISBN 9783031092824. doi:
10.1007/978-3-031-09282-4_24.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778. IEEE,
2016.

[24] E. Hernandez, S. Schwettmann, D. Bau, T. Bagashvili, A. Torralba, and J. Andreas. Natural lan-
guage descriptions of deep features. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=NudBMY-tzDrl

[25] R. Hesse, J. Fischer, S. Schaub-Meyer, and S. Roth. Disentangling polysemantic channels in
convolutional neural networks. In The First Workshop on Mechanistic Interpretability for Vision,
2025.

[26] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[27] S.Jiao, Y. Wei, Y. Wang, Y. Zhao, and H. Shi. Learning mask-aware clip representations for zero-
shot segmentation. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems, volume 36, pages 35631-35653.
Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/6ffe484a646db13891bb6435ca39d667-Paper-Conference.pdf.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436€924a68c45b-Paper . pdf.

[29] B. La Rosa, L. H. Gilpin, and R. Capobianco. Towards a fuller understanding of neurons with
clustered compositional explanations. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=51PLYhMFWz.

12


https://openreview.net/forum?id=NudBMY-tzDr
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ffe484a646db13891bb6435ca39d667-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ffe484a646db13891bb6435ca39d667-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://openreview.net/forum?id=51PLYhMFWz

[30] B. Li, K. Q. Weinberger, S. Belongie, V. Koltun, and R. Ranftl. Language-driven semantic
segmentation. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=RriDjddCLN,

[31] F. Li, H. Zhang, P. Sun, X. Zou, S. Liu, C. Li, J. Yang, L. Zhang, and J. Gao. Segment
and Recognize Anything at Any Granularity, pages 467-484. Springer Nature Switzerland, Nov.
2024. ISBN 9783031731952. doi: 10.1007/978-3-031-73195-2_27.

[32] X.Li, H. Yuan, W. Li, H. Ding, S. Wu, W. Zhang, Y. Li, K. Chen, and C. C. Loy. Omg-seg: Is
one model good enough for all segmentation? In CVPR, 2024.

[33] F. Liang, B. Wu, X. Dai, K. Li, Y. Zhao, H. Zhang, P. Zhang, P. Vajda, and D. Marculescu. Open-
vocabulary semantic segmentation with mask-adapted clip. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 7061-7070, June 2023.

[34] F. Liang, B. Wu, X. Dai, K. Li, Y. Zhao, H. Zhang, P. Zhang, P. Vajda, and D. Marculescu. Open-
vocabulary semantic segmentation with mask-adapted clip. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7061-7070, 2023.

[35] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollér, and C. L. Zit-
nick. Microsoft COCO: Common Objects in Context, pages 740-755. Springer International
Publishing, 2014. ISBN 9783319106021. doi: 10.1007/978-3-319-10602-1_48.

[36] Y. Liu, S. Bai, G. Li, Y. Wang, and Y. Tang. Open-vocabulary segmentation with semantic-
assisted calibration. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3491-3500, June 2024.

[37] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 10012-10022, October 2021.

[38] T. Liiddecke and A. Ecker. Image segmentation using text and image prompts. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
7086-7096, June 2022.

[39] H. Luo, J. Bao, Y. Wu, X. He, and T. Li. SegCLIP: Patch aggregation with learnable centers for
open-vocabulary semantic segmentation. /CML, 2023.

[40] S. M. Makinwa, B. La Rosa, and R. Capobianco. Detection accuracy for evaluating composi-
tional explanations of units. In AIxIA 2021 - Advances in Artificial Intelligence, pages 550-563.
Springer International Publishing, 2022. doi: 10.1007/978-3-031-08421-8_38.

[41] R. Massidda and D. Bacciu. Knowledge-driven interpretation of convolutional neural net-
works. In Machine Learning and Knowledge Discovery in Databases, pages 356-371. Springer
International Publishing, 2023. doi: 10.1007/978-3-031-26387-3_22.

[42] G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39-41, Nov. 1995. ISSN 1557-7317. doi: 10.1145/219717.219748.

[43] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The
role of context for object detection and semantic segmentation in the wild. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2014.

[44] J. Mu and J. Andreas. Compositional explanations of neurons. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS °20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[45] G. Neuhold, T. Ollmann, S. R. Bulo, and P. Kontschieder. The mapillary vistas dataset for
semantic understanding of street scenes. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 5000-5009. IEEE, Oct. 2017. doi: 10.1109/iccv.2017.534.

[46] A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization: Uncovering the
different types of features learned by each neuron in deep neural networks. Visualization for
Deep Learning workshop, ICML 2016, Feb. 2016.

13


https://openreview.net/forum?id=RriDjddCLN
https://openreview.net/forum?id=RriDjddCLN

[47] T. Oikarinen and T.-W. Weng. CLIP-dissect: Automatic description of neuron representations
in deep vision networks. In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iPWiwWHc1V,

[48] T. Oikarinen and T.-W. Weng. Linear explanations for individual neurons. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=WIbntm28cM.

[49] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill, 2(11), nov 2017. doi:
10.23915/distill.00007.

[50] L. O’Mahony, V. Andrearczyk, H. Miiller, and M. Graziani. Disentangling neuron representa-
tions with concept vectors. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3769-3774, 2023.

[51] L. O’Mahony, N. S. Nikolov, and D. J. O’Sullivan. Towards utilising a range of neural activations
for comprehending representational associations. In 2025 IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pages 2495-2506. IEEE, Feb. 2025. doi: 10.1109/
wacv61041.2025.00248.

[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: an imperative style,
high-performance deep learning library. Curran Associates Inc., Red Hook, NY, USA, 2019.

[53] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual mod-
els from natural language supervision. In M. Meila and T. Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 8748-8763. PMLR, 18-24 Jul 2021. URL https:
//proceedings.mlr.press/v139/radford21a.html,

[54] V. V. Ramaswamy, S. S. Y. Kim, R. Fong, and O. Russakovsky. Overlooked factors in concept-
based explanations: Dataset choice, concept learnability, and human capability. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
10932-10941, June 2023.

[55] Y. Rao, W. Zhao, G. Chen, Y. Tang, Z. Zhu, G. Huang, J. Zhou, and J. Lu. Denseclip: Language-
guided dense prediction with context-aware prompting. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

[56] S.Ren, A.Zhang, Y. Zhu, S. Zhang, S. Zheng, M. Li, A. Smola, and X. Sun. Prompt pre-training
with twenty-thousand classes for open-vocabulary visual recognition. In Proceedings of the

37th International Conference on Neural Information Processing Systems, NIPS *23, Red Hook,
NY, USA, 2024. Curran Associates Inc.

[57] Y. Shen, C. Fu, P. Chen, M. Zhang, K. Li, X. Sun, Y. Wu, S. Lin, and R. Ji. Aligning and
prompting everything all at once for universal visual perception. 2024.

[58] G. Shin, W. Xie, and S. Albanie. Reco: Retrieve and co-segment for zero-shot transfer. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

[59] Y. Song, N. Sebe, and W. Wang. Why approximate matrix square root outperforms accurate svd
in global covariance pooling? In ICCV, 2021.

[60] A. A. Srinivas, T. Oikarinen, D. Srivastava, W.-H. Weng, and T.-W. Weng. Sand: Enhancing
open-set neuron descriptions through spatial awareness. In 2025 IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages 2993-3002. IEEE, Feb. 2025. doi: 10.1109/
wacv61041.2025.00296.

[61] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

14


https://openreview.net/forum?id=iPWiwWHc1V
https://openreview.net/forum?id=WIbntm28cM
https://openreview.net/forum?id=WIbntm28cM
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

X. Wang, S. Li, K. Kallidromitis, Y. Kato, K. Kozuka, and T. Darrell. Hierarchical open-
vocabulary universal image segmentation. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019.

M. Wysoczanska, O. Siméoni, M. Ramamonjisoa, A. Bursuc, T. Trzcifiski, and P. Pérez. Clip-
dinoiser: Teaching clip a few dino tricks for open-vocabulary semantic segmentation. ECCV,
2024.

Y. Xian, S. Choudhury, Y. He, B. Schiele, and Z. Akata. Semantic projection network for
zero- and few-label semantic segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

B. Xie, J. Cao, J. Xie, F. S. Khan, and Y. Pang. Sed: A simple encoder-decoder for open-
vocabulary semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 34263436, June 2024.

J. Xu, S. De Mello, S. Liu, W. Byeon, T. Breuel, J. Kautz, and X. Wang. Groupvit: Semantic
segmentation emerges from text supervision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 18134—18144, June 2022.

J. Xu, J. Hou, Y. Zhang, R. Feng, Y. Wang, Y. Qiao, and W. Xie. Learning open-vocabulary
semantic segmentation models from natural language supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2935-2944, 2023.

J. Xu, S. Liu, A. Vahdat, W. Byeon, X. Wang, and S. De Mello. Open-vocabulary panoptic
segmentation with text-to-image diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2955-2966, June 2023.

M. Xu, Z. Zhang, F. Wei, Y. Lin, Y. Cao, H. Hu, and X. Bai. A Simple Baseline for Open-
Vocabulary Semantic Segmentation with Pre-trained Vision-Language Model, pages 736-753.
Springer Nature Switzerland, 2022. ISBN 9783031198182. doi: 10.1007/978-3-031-19818-2_
42.

M. Xu, Z. Zhang, F. Wei, Y. Lin, Y. Cao, H. Hu, and X. Bai. A simple baseline for open-
vocabulary semantic segmentation with pre-trained vision-language model. In Computer
Vision — ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part XXIX, page 736-753, Berlin, Heidelberg, 2022. Springer-Verlag. ISBN 978-
3-031-19817-5. doi: 10.1007/978-3-031-19818-2_42. URL https://doi.org/10.1007/
978-3-031-19818-2_42,

M. Xu, Z. Zhang, F. Wei, H. Hu, and X. Bai. Side adapter network for open-vocabulary semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2945-2954, June 2023.

X. Xu, T. Xiong, Z. Ding, and Z. Tu. Masqclip for open-vocabulary universal image segmenta-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 887-898, October 2023.

Q. Yu, J. He, X. Deng, X. Shen, and L.-C. Chen. Convolutions die hard: Open-vocabulary
segmentation with single frozen convolutional clip. In NeurIPS, 2023.

H. Zhang, F. Li, X. Zou, S. Liu, C. Li, J. Yang, and L. Zhang. A simple framework for
open-vocabulary segmentation and detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 1020-1031, October 2023.

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million image

database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

15


https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1007/978-3-031-19818-2_42
https://doi.org/10.1007/978-3-031-19818-2_42

[77] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through
ade20k dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, July 2017. doi: 10.1109/cvpr.2017.544.

[78] C. Zhou, C. C. Loy, and B. Dai. Extract free dense labels from clip. In European Conference
on Computer Vision (ECCV), 2022.

[79] Z. Zhou, Y. Lei, B. Zhang, L. Liu, and Y. Liu. Zegclip: Towards adapting clip for zero-shot
semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

[80] X.Zou, Z.-Y. Dou, J. Yang, Z. Gan, L. Li, C. Li, X. Dai, H. Behl, J. Wang, L. Yuan, N. Peng,
L. Wang, Y. J. Lee, and J. Gao. Generalized decoding for pixel, image, and language. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 15116-15127, June 2023.

[81] X. Zou, J. Yang, H. Zhang, F. Li, L. Li, J. Wang, L. Wang, J. Gao, and Y. J. Lee. Segment
everything everywhere all at once. In Proceedings of the 37th International Conference
on Neural Information Processing Systems, NIPS *23, Red Hook, NY, USA, 2024. Curran
Associates Inc.

A Extended Quantitative Evaluation

This section complements the quantitative evaluation of our proposed frameworks by providing results
computed using additional configurations. Results include both average and standard deviation. It is
important to emphasize that the explanations and the metrics used to measure their quality are
not expected to exhibit low variance. This variability arises from the overparameterization and the
learning process of deep neural networks. Indeed, as observed by [2]] and [44], not all neurons within
the network are aligned with specific concepts, leading to high variability in the degree of alignment.
This effect is especially pronounced for compositional explanations and the metrics computed over
pixel-level data, where the alignment between neuron activations and labeled concepts can fluctuate
significantly.

A.1 Additional Open Vocabulary Segmentation Models

In this section, we compute explanations for the same settings considered in the main paper by using
other segmentation models as the backbone of our proposed framework. The goal of this experiment
is not to select the best open vocabulary segmentation model but to assess the general validity
of the combination between compositional explanations and research in open vocabulary semantic
segmentation. From the extensive range of models available in the literature [[69, (711164} 27, 18,33, 155]
39,167,158, [78) 1117941681156, 1381 20L [8 1} 1804 132,74, 157, 162, [72], we selected five representative models:
CAT-Seg (L) [I11], MasQCLIP [73]], SCAN (VitL) [36], SED (L) [66], and OpenSeed (Swin-T) [75].
These models have been selected based on the following criteria: (i) they are among the most recent
ones and published in major conferences, (ii) the pre-trained models are available to the general
public, and (ii) the implementation is compatible with the technical settings considered in this paper
(i.e., PyTorch 1.3 [52]], Detectron2 [63]], MMEngine 1.6.2 [12], and MMSegmentation 0.27.0 [13]),
without requiring major code changes. While these models serve as examples of implementations of
the framework, better explanations could potentially be obtained by using models beyond the settings
tested in this paper, especially when using models trained on very large corpora [81,131]. As weights,
we use the pre-trained weights available in the official repositories of selected models.

In Tables 4] and[5} we report the results for the selected models when probing the Place365 and the
CUB model, respectively. Note that, for all the open-vocabulary models proving the CUB model,
we use the concept set identified for Cat-Seg (see Section D). This implies that the reported results
could be further improved by refining the concept sets to better match the specific characteristics
of each model. Moreover, the implementation based on OpenSeed and the Closed baseline are
both trained on the same dataset (i.e., COCO [35])) and share the same trained backbone (i.e., Swin-
T [37]. This similarity results in similar scores for the highest activation range (Cluster 5), which
is typically associated with the recognition of specific and complex objects [44}29]. These results
suggest a potential dependency of this implementation on the recognition capabilities of the shared
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backbone, where both models recognize the same mask, and thus they lean toward similar overlap
with neuron activations, but they can possibly assign labels at different granularities. Overall, we
observe comparable results across all models. No single model is able to outperform all the others in
every setting, with each excelling in specific activation ranges and scores. These little differences
can be attributed to the specific capabilities of recognizing more general or specific concepts of each
segmentation model. Lastly, note that MasQCLIP is the only model that includes the “background”
concept (by default). This difference explains the differences in the lower clusters of the Ade20K
settings, typically influenced by default rules [29] that include this kind of concept. Therefore,
overall, the quality of the proposed framework does not strictly depend on the specific choice of its
implementation.

Cluster Method ToU ActCov DetAcc
1 Human 0.219 £0.015 0.352 £0.018 0.369 +0.032
Closed 0.215 £0.015 0.341 +£0.018 0.368 +0.032
OursMasQCLIP 0.112 £0.010 0.137 4+0.013 0.373 £0.036
Oursscan 0.202 £0.014 0.302 £0.014 0.379 +0.034
Ourssgp 0.206 £0.014 0.313 £0.016 0.377 £0.033

Ourscar.seg 0.212 £0.014 0.327 £0.016 0.376 +0.033
Oursopenseed 0.226 £0.015  0.372 £0.021  0.367 4 0.032

2 Human 0.132 4+ 0.021 0.322 +£0.040 0.184 +0.033
Closed 0.130 £0.019 0.306 £0.042 0.187 40.033
OuI‘SMaSQCL[p 0.090 +£0.014 0.142 £0.026 0.200 £ 0.033
Oursscan 0.125 £0.021 0.272 £0.042 0.190 £+0.035
Ourssgp 0.128 +£0.020 0.285 £0.040 0.190 +0.034

Ourscar-seg 0.130 £0.021  0.302 £0.040 0.188 +0.033
Oursopenseed 0.136 £0.020  0.340 £0.046  0.186 =+ 0.032

3 Human 0.102 £0.031 0.276 £0.086 0.148 +0.048
Closed 0.106 £0.029 0.272 £0.083 0.155 +0.045
OllI'SMaSQCL[p 0.087 +0.023 0.157 40.049 0.168 =+ 0.044
Oursscan 0.104 £0.030 0.244 £0.079 0.161 +0.047
Ourssgp 0.105 £0.030 0.256 £0.077 0.156 +0.046

Ourscarses  0.105 +£0.030  0.266 +0.081  0.155 + 0.046
Oursopenseed ~ 0-108 +0.029  0.296 +0.089  0.152 + 0.044

4 Human 0.083 £0.033 0.226 +£0.122 0.139 =+ 0.066
Closed 0.090 £ 0.033 0.241 £0.121 0.140 £ 0.056
Oursyizsocp 0.087 £0.032  0.182 +£0.078  0.154 +0.055
Oursscan 0.093 £0.034 0.222 £0.109 0.154 + 0.060
Ourssgp 0.091 £0.033 0.228 +£0.114 0.152 +0.064

Ourscar-seg 0.090 £0.034 0.235 £0.118 0.148 +0.065
Oursopenseed 0.088 £0.032  0.256 +0.131  0.137 +0.058

5 Human 0.070 +£0.044 0.183 £0.134  0.137 £0.094
Closed 0.065 £0.034 0.213 £0.140 0.109 +0.070
Oursmasgecip 0.075 £0.036 0.214 £0.126  0.118 +£0.059
Oursscan 0.082 £0.044 0.220 £0.132  0.139 +0.083
Ourssgp 0.081 £0.044 0.216 £0.134 0.137 £0.078

Ourscar-seg 0.079 £0.044 0.214 £0.141  0.139 +0.085
Oursopenseed 0.064 £0.038  0.215 £0.151  0.110 £+ 0.079

Table 4: Avg. and Std. Dev. scores for explanations associated with a model trained on the Place365
dataset using Ade20K as a probing dataset.

A.2 Additional Probing Datasets
In this section, we report the results obtained by using several datasets as probing datasets for comput-

ing compositional explanations. We report the results for all the implementations (Section [A.T)) of our
proposed framework other than the human and closed vocabulary baselines. These datasets have been
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Cluster Method TIoU ActCov DetAcc
1 Human 0.248 +£0.022 0.356 £0.019 0.451 +0.057
Closed 0.388 +0.040 0.635 +£0.019 0.501 +0.061
OursMasQCLIP 0.306 £ 0.028 0.441 £0.022 0.502 £ 0.063
Oursscan 0.439 +0.045 0.836 £0.020 0.481 +0.055
Ourssgp 0.405 +£0.040 0.678 £0.016 0.503 +0.059
Ourscar-seg 0.357 £0.034 0.553 £0.019 0.504 4 0.060
Oursopenseed 0.470 £0.051 0.929 +£0.030 0.488 +0.059
2 Human 0.130 £0.035 0.312 £0.059 0.185 +0.057
Closed 0.170 +£0.032 0.505 +£0.152 0.214 +0.041
OHI‘SMaSQCL[p 0.161 £0.024 0.407 £0.076 0.214 £0.035
Oursscan 0.174 +£0.034 0.563 +£0.188 0.209 4+ 0.038
Ourssgp 0.176 +£0.032 0.522 +£0.138 0.215 +0.036
Ourscat-seg 0.173 £0.028 0.463 £0.102 0.221 4+0.038
Oursopenseed 0.179 £0.033  0.602 £0.198  0.211 +0.036
3 Human 0.085 +£0.031 0.228 +£0.088 0.126 +0.046
Closed 0.142 +£0.030 0453 +£0.116 0.175 +£0.039
OuI‘SMaSQCL[p 0.136 £ 0.027 0.388 £0.074 0.176 £0.038
Oursscan 0.144 +0.029 0422 +£0.101 0.182 40.039
Ourssgp 0.143 +0.028 0.425 +£0.089 0.180 +0.036
Ourscar-seg 0.147 +£0.030 0.432 +£0.093 0.185 4+0.038
Oursopenseed ~ 0.141 +£0.027  0.463 £0.101  0.170 + 0.034
4 Human 0.063 +£0.030 0.167 £0.101  0.105 +0.050
Closed 0.091 +£0.027 0.571 £0.136 0.100 4 0.031
OurSMaSQCLIP 0.098 +0.024 0.336 +0.105 0.126 +0.035
Oursscan 0.101 £0.026 0.426 +£0.139 0.123 4+0.037
Ourssgp 0.103 £0.025 0.383 +£0.122 0.129 +0.038
Ourscar-seg 0.113 +£0.027 0.356 £0.115 0.147 +0.039
Oursgpenseed 0.095 £0.025  0.413 £0.089  0.111 +0.031
5 Human 0.052 £0.029 0.144 +0.124 0.100 £ 0.058
Closed 0.029 +0.014 0.674 £0.195 0.033 4+0.028
Oursmasgeip 0.059 £0.019  0.165 £0.067  0.095 +0.044
Oursscan 0.060 =+ 0.021 0.153 +£0.080 0.112 +0.059
Ourssgp 0.068 £0.023 0.155 £0.069 0.125 40.055
Ourscat-seg 0.077 £0.024 0.188 +£0.072 0.131 +0.056
Oursopenseed 0.042 +£0.016 0.170 £0.103  0.060 =4 0.039

Table 5: Avg. and Std. Dev. scores for explanations associated with a model trained on the CUB
dataset using CUB as a probing dataset.

chosen because there are publicly available scripts to make them compatible with Detectron2 [63],
which is the most common framework used for evaluating open vocabulary segmentation models,
and they are commonly used to evaluate progress in the image segmentation field or compositional
explanations (Ade20k and PASCAL). Specifically, we randomly extract 50 neurons for each probed
model and we generate explanations for those neurons using as a probing dataset the validation
split of the following datasets: Mapillary Vistas [43]], Cityscapes [14], Pascal VOC [18]], PASCAL-
Context-459 [43]], Ade20k in its extended version with 847 classes [[77]], and COCO-Stuff [6]. Note
that we do not include OpenSeed in the Mapillary Vistas evaluation due to technical limitationsﬂ As
a probed model, we use the same model used in Section 4 trained on Place365, since the learned
place categories are related to the concepts and segmentation masks included in these datasetﬂ We
follow the same settings used in Section 4. Therefore, we use the masks’ labels from the dataset as

20ut of Memory issues on a GTX 3090 graphic card.
3Note that we do not probe models trained on these datasets, as they are segmentation models specifically
trained to classify the same concepts. This undermines the utility of compositional explanations.
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Cluster Method ToU ActCov DetAcc

1 Human 0.218 +0.016 0.350 +£0.016 0.367 +0.034
Closed 0.215 +£0.015 0.340 £0.019 0.369 +0.033
OursMasQCLIP 0.087 £ 0.007 0.100 4 0.008 0.393 +0.033
Oursscan 0.185 £0.014 0.263 £0.014 0.383 +0.038
Ourssgp 0.198 +0.014 0.293 +0.013 0.379 +0.035

Ourscar-seg 0.203 +0.014 0.304 £0.013 0.378 £0.034
Oursopenseed 0.223 £0.015  0.363 £0.020  0.368 =+ 0.032

2 Human 0.131 +£0.020 0.320 +£0.039 0.184 +0.035
Closed 0.130 £0.019 0.308 £0.039 0.186 +0.035
OHI‘SMaSQCL[p 0.076 +0.015 0.107 4 0.021 0.210 40.043
Oursscan 0.114 +£0.020 0.222 £0.038 0.193 £0.042
Ourssgp 0.122 +0.020 0.258 +0.035 0.191 +0.039

Ourscat-seg 0.124 £0.020 0.272 £0.034 0.188 +0.037
Oursopenseed 0.133 £0.019  0.333 £0.040 0.184 +0.034

3 Human 0.101 £0.029 0.263 +0.083 0.149 +0.046
Closed 0.104 £0.028 0.262 £0.079 0.156 £ 0.047
OuI‘SMaSQCL[p 0.075 £0.023 0.118 £0.042 0.176 £ 0.049
Oursscan 0.096 £0.027 0.203 £0.062 0.163 £ 0.047
Oursgsgp 0.100 £0.029 0.230 +£0.066 0.155 +0.045

Ourscarses  0.100 +£0.029 0240 +0.073  0.155 +0.047
Oursopenseed ~ 0.104 +0.028  0.280 +0.081  0.151 +0.046

4 Human 0.083 £0.030 0.219 £0.107 0.142 +0.073
Closed 0.089 £0.030 0.230 £0.098 0.141 +0.058
Oursmasqecip 0.079 £0.027  0.141 £0.055 0.166 + 0.057
Oursscan 0.086 £0.029 0.192 +£0.083 0.155 +£0.072
Ourssep 0.086 +£0.031 0.209 +£0.085 0.146 +0.071

Ourscar-seg 0.086 £0.031 0.211 £0.091 0.148 +0.074
Oursppenseea 0.088 £0.030  0.232 £0.110  0.145 +£0.067

5 Human 0.098 £0.076  0.196 £0.148 0.242 £0.171
Closed 0.071 £0.042 0.221 £0.145 0.119 +0.081
Oursyasocie 0.103 £0.056 0.186 £0.100  0.207 =+ 0.092
Oursscan 0.107 £0.072  0.195 £0.127 0.240 £0.140
Ourssgp 0.106 £0.071  0.195 £0.136  0.234 +0.135

Ourscat-seg 0.103 £0.070 0.208 +£0.145 0.236 +£0.139
Oursopenseed 0.079 £0.065  0.226 £0.169  0.152 +0.119

Table 6: Avg. scores for explanations associated with a model trained on the Place365 dataset using
Ade20K-Extended (847 classes) as a probing dataset.

the concept set for our framework without further refining the concept set and without splitting it into
concept subsets.

Tables 6] to[TT| compare the baselines and the framework’s implementations using the IoU, Activation
coverage and Detection Accuracy metrics. Similarly to Section [A.T]| we observe comparable results
across all models and datasets, confirming the generality of the good performance of our framework.

A.3 Additional Probed Models

In this section, we report the results explaining different probed models. Following [44] 29]], we
compute explanations scores for DenseNet161 [26] and AlexNet [28]] pre-trained on the Place365
dataset [76]. We report the results for our framework using the same configuration as in the main
text, the human, and the closed vocabulary baselines. Specifically, we randomly extract 50 neurons
for each probed model and we generate explanations for those neurons using as a probing dataset
the validation split of Ade20K [[77]. Tables [I2]and [13]confirm the comparable performance of the
framework with respect to the baseline, making the insights independent of the probed model in use.
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Cluster Method ToU ActCov DetAcc

1 Human 0.304 +£0.042 0.652 £0.040 0.363 40.052
Closed 0.310 £0.043 0.680 £0.045 0.363 4 0.052
OursMasQCLIP 0.202 £0.021 0.308 40.019 0.374 4 0.056
Oursscan 0.311 +£0.042 0.691 +£0.038 0.362 +0.051
Ourssgp 0.313 £0.042 0.714 £0.051 0.358 +0.051
Ourscar-seg 0.313 +£0.042 0.704 +£0.038 0.361 +0.052

2 Human 0.161 +£0.035 0.517 £0.106 0.192 +0.043
Closed 0.166 +0.037 0.530 +£0.116 0.197 +0.045
Oursmasqeip 0.138 £0.028  0.301 £0.041  0.205 +0.050
Oursscan 0.168 +£0.037 0.552 +£0.118 0.196 +0.043
Ourssgp 0.168 +0.039 0.569 +£0.119 0.195 +0.046
Ourscar-seg 0.169 +£0.038 0.570 £0.121  0.195 +0.044

3 Human 0.121 +£0.039 0409 £0.109 0.152 4+0.055
Closed 0.124 +0.042 0.436 +0.126 0.151 +0.055
OllI'SMaSQCL[p 0.110 £0.035 0.276 £ 0.065 0.159 £ 0.055
Oursscan 0.126 +£0.043 0.460 +0.116 0.151 +0.054
Ourssgp 0.125 +£0.043 0476 £0.130 0.149 +0.057
Ourscar-seg 0.126 +0.043 0.482 +0.125 0.149 +0.056

4 Human 0.088 +0.042 0.323 £0.139 0.123 +0.076
Closed 0.087 +£0.040 0.334 +£0.150 0.117 +0.065
Oursyasocuie 0.083 £0.037  0.241 +£0.100  0.125 +0.081
Oursscan 0.087 £0.041 0.370 £0.155 0.112 =+ 0.057
Ourssgp 0.086 +0.041 0.371 £0.165 0.116 +0.072
OurSCAT-Seg 0.087 +£0.042 0.372 £0.163 0.116 +0.076

5 Human 0.053 +£0.036 0.266 +0.200 0.080 + 0.068
Closed 0.050 +0.028 0.254 +£0.207 0.082 =+ 0.068
OllI'SMaSQCL[p 0.056 =+ 0.038 0.187 £0.114 0.082 +0.072
Oursscan 0.052 +0.033 0.264 +0.217 0.081 +0.057
Ourssgp 0.052 £0.035 0.273 +£0.223 0.077 £0.057

Ourscar-seg 0.052 £0.033 0.271 £0.226 0.078 +0.051

Table 7: Avg. and Std. Dev. scores for explanations associated with a model trained on the Place365
dataset using Mapillary Vistas as a probing dataset.

A.4 Maetrics Details and Additional Metrics

This section provides the formalization of Detection Accuracy and Activation Coverage and introduces
and compares the competitors using two additional metrics: Sample Coverage and Explanation
Coverage [29]. We chose these metrics because they have been used by previous literature to study
cluster-level explanations [29]] and allow us to perform a pixel-level comparison of the different
segmentation masks produced by different competitors.

We use the same notation introduced in Section 3. However, because Sample Coverage and Explana-
tion Coverage are computed per sample, we need to introduce an additional notation. Namely, we
use M” to indicate the set of binarized segmentation masks associated with the sample x and A* to
indicate the set of binarized activations associated with the sample x.

Detection Accuracy quantifies the percentage of label annotations recognized within the activation
range. A high value indicates that most of the label’s masks are detected by the neuron using the
given activation range.

[ANOM, L)|

DetACC(L,A,M) = W (12)

Activation Coverage measures the percentage of neuron activations within the annotated label
regions. A high value indicates that the label “dominates” large parts of the activation range (i.e.,
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Cluster Method ToU ActCov DetAcc

1 Human 0.294 +0.038 0.650 +£0.055 0.353 +0.055
Closed 0.309 £0.042 0.687 £0.061 0.363 +0.059
OursMasQCLIP 0.306 £ 0.045 0.701 40.048 0.354 4+0.055
Oursscan 0.316 £0.044 0.753 £0.067 0.355 +0.055
Ourssgp 0.310 +£0.042 0.724 +0.068 0.355 +0.057

Ourscar-seg 0.314 £0.043 0.729 £0.066 0.359 +0.057
Oursopenseed 0.309 £0.041  0.711 £0.069  0.357 +0.058

2 Human 0.178 +£0.044 0.580 £0.097 0.206 +0.052
Closed 0.183 +0.046 0.620 +£0.100 0.208 =+ 0.053
OHI‘SMaSQCL[p 0.177 £0.048 0.639 £0.097 0.197 £0.054
Oursscan 0.186 +£0.046 0.655 £0.117 0.207 +0.051
Ourssgp 0.184 +0.048 0.655 £0.106 0.205 +0.054

Ourscat-seg 0.185 £0.047 0.649 +£0.115 0.207 £0.053
Oursopenseea 0.183 £0.047  0.650 £0.103  0.204 +0.053

3 Human 0.131 £0.045 0.500 +0.099 0.154 +0.056
Closed 0.130 £0.044 0.538 +£0.112 0.149 +0.054
OuI‘SMaSQCL[p 0.120 £ 0.042 0.463 £0.149 0.142 +0.049
Oursscan 0.131 £0.044 0.563 +£0.115 0.149 +0.054
Oursgsgp 0.130 £0.045 0.571 +£0.138 0.148 +0.055

Olll‘SCAT_seg 0.131 £0.045 0.565 £0.122 0.149 4+ 0.054
Oursppenseed 0.130 £0.045  0.558 £0.130  0.148 +£0.055

4 Human 0.091 £0.047 0412 £0.188 0.114 =+ 0.067
Closed 0.088 £0.042 0.391 £0201 0.109 =+ 0.052
OursysocLie 0.082 +0.036 0.342 £0.173  0.107 + 0.049
Oursscan 0.088 £0.043 0.417 £0210 0.108 £0.053
Ourssgp 0.087 +£0.042 0.447 £0208 0.105 =+ 0.051

Ourscar-seg 0.088 £0.042 0.432 £0.200 0.106 +0.050
Oursopenseed 0.086 £0.042  0.434 £0211  0.104 +0.051

5 Human 0.050 £0.038 0.308 £0.246 0.068 =+ 0.057
Closed 0.048 £0.029 0.277 £0.239 0.068 =+ 0.045
Oursyizsocp . 0.045 £0.028 0290 +0.188  0.057 +0.037
Oursscan 0.045 £0.031 0.333 £0271 0.057 £0.043
Ourssgp 0.044 £0.029 0.352 £0.287 0.058 =+ 0.044

Ourscat-seg 0.045 £0.028 0.342 +£0.280 0.060 +0.043
Oursopenseed 0.043 £0.029  0.358 £0.283  0.055 +0.042

Table 8: Avg. and Std. Dev. scores for explanations associated with a model trained on the Place365
dataset using Citiscapes as a probing dataset.

there is a strong mapping).

[ANO(M, L)|

ActCou(L, A,M) = Al

(13)

Samples Coverage calculates the ratio of samples in the probing dataset that are captured by
the explanation and where the neuron activation falls within the activation and the total number of
samples satisfying the explanation

SampleCov(L,A;M, D) =

{z €D : |A" N6(M?, L)| > 0}] (14)
{z € D :[0(M*, L)| > 0}

Explanation Coverage calculates the ratio of samples in the probing dataset that are captured by
the explanation and where the neuron activation falls within the activation range and the total number
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Cluster Method TIoU ActCov DetAcc
1 Human 0.177 +0.011 0.247 +£0.012 0.386 +0.035
Closed 0.188 +£0.012 0.271 £0.014 0.383 +0.036
OursMasQCLIP 0.179 £0.012 0.255 £0.010 0.376 £ 0.037
Oursscan 0.177 £0.012 0.249 +£0.011 0.381 +0.038
Ourssgp 0.182 +£0.012 0.259 +0.011 0.381 +0.038
Ourscar-seg 0.184 +0.012 0.264 £0.013 0.380 40.038
Oursopenseed 0.193 +£0.012 0.280 +£0.014 0.383 +0.035
2 Human 0.118 +0.011 0.233 +£0.022 0.194 +0.024
Closed 0.119 +£0.013  0.245 +£0.029 0.190 +0.027
OHI‘SMaSQCL[p 0.101 £0.013 0.220 £0.024 0.158 £0.024
Oursscan 0.112 £0.013 0.217 £0.025 0.191 +0.029
Ourssgp 0.115 £0.013 0.228 +£0.027 0.191 +0.028
Ourscat-seg 0.117 £0.013 0.236 £0.028 0.192 40.028
Oursopenseea 0.121 £0.013  0.253 £0.031  0.192 +0.028
3 Human 0.106 +£0.018 0.220 £0.049 0.180 +0.047
Closed 0.105 £0.020 0.216 £0.055 0.182 40.048
OuI‘SMaSQCL[p 0.086 +0.019 0.158 £ 0.043 0.177 £0.059
Oursscan 0.103 £0.019 0.204 £0.051 0.185 40.048
Ourssgp 0.104 +£0.020 0.212 +0.051 0.181 +0.046
Ourscar-seg 0.105 +£0.020 0.215 £ 0.051 0.181 4 0.045
Oursopenseed 0106 +0.020  0.220 +£0.055  0.181 +0.045
4 Human 0.112 £0.055 0.251 +£0.088 0.175 +0.087
Closed 0.113 £0.054 0.250 £0.095 0.177 +£0.084
OllI'SMaSQCLIp 0.100 £ 0.051 0.189 +0.086 0.175 £+0.083
Oursscan 0.112 £0.055 0.241 £0.097 0.177 +£0.084
Ourssgp 0.113 £0.056 0.246 +£0.097 0.178 +0.088
Ourscar-seg 0.113 £0.056 0.250 £0.096 0.177 +0.087
Oursopenseed 0.113 £0.055 0.254 +£0.096 0.177 £+0.088
5 Human 0.077 £0.055 0.280 +£0.203 0.103 +0.063
Closed 0.077 £0.055 0.301 £0.195 0.102 4 0.071
Oursmasgeip 0.078 £0.052 0.233 £0.191  0.120 +£0.065
Oursscan 0.079 +£0.055 0.286 +£0.198 0.105 4+ 0.068
Ourssgp 0.080 £0.056 0.279 +£0.206 0.110 =+ 0.069
Ourscat-seg 0.079 +£0.056 0.286 +£0.205 0.109 +0.071
Oursopenseed 0.078 £0.056 0.290 +0.209 0.108 +0.074

Table 9: Avg. and Std. Dev. scores for explanations associated with a model trained on the Place365
dataset using Pascal-Context with 459 labels as a probing dataset.

of samples where the neuron activation falls within the activation range.

A.4.1 Results

ExplCov(L,AM, D) =

{z € D :|A* N OM*, L)| > 0}

{ze®: A7 > 0}

15)

As shown in Table[I4] the results for the additional metrics are similar to the ones reported in the
main text for the other metrics. Thus, considering the large standard deviation of these metrics, the
results can be considered comparable.
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Cluster Method ToU ActCov DetAcc

1 Human 0.152 +0.008 0.205 +0.009 0.374 +0.032
Closed 0.187 £0.010 0.270 £0.009 0.377 £0.032
OursMasQCLIP 0.107 £ 0.005 0.129 40.005 0.384 40.032
Oursscan 0.145 +0.008 0.191 £0.009 0.376 +0.031
Ourssgp 0.165 +0.009 0.228 +0.010 0.373 +0.032

Ourscar-seg 0.164 £0.009 0.228 £0.009 0.372 +£0.032
Oursopenseed 0.187 £0.010  0.270 £0.010  0.378 4 0.032

2 Human 0.104 +£0.010 0.189 £0.020 0.188 =+ 0.021
Closed 0.117 +£0.012 0.243 +£0.029 0.186 +0.021
OHI‘SMaSQCL[p 0.078 £ 0.008 0.119 £0.011 0.185 £0.027
Oursscan 0.103 +£0.010 0.185 +£0.017 0.188 +0.021
Ourssgp 0.111 +£0.011  0.215 £0.021 0.189 +0.022

Ourscarse  0.111 +£0.011 0213 £0.022  0.189 +0.021
OurSopenseed ~ 0-117 £0.012  0.242 £0.029  0.186 + 0.022

3 Human 0.090 £0.019 0.182 £0.046 0.160 +0.045
Closed 0.098 +0.022 0.220 £0.058 0.158 40.045
OuI‘SMaSQCL[p 0.074 +£0.016 0.119 £+0.023 0.169 =+ 0.045
Oursscan 0.090 £0.018 0.180 £0.047 0.164 4 0.047
Ourssgp 0.095 +£0.020 0.203 £0.052 0.161 +0.046

Olll‘SCAT_seg 0.095 +£0.020 0.201 £0.052 0.162 4+0.047
Oursgpenseed 0.097 £0.021  0.217 £0.056  0.159 =+ 0.046

4 Human 0.089 +£0.037 0.185 +£0.084 0.166 +0.070
Closed 0.094 +£0.038 0.213 £0.087 0.160 + 0.069
Oursmasqecip 0.086 £0.035  0.150 £0.065 0.174 +0.065
Oursscan 0.093 +£0.038 0.188 £0.082 0.172 +0.071
Ourssgp 0.093 £0.038 0.203 +0.084 0.164 +0.073

Ourscar-seg 0.093 +£0.038 0.201 £0.085 0.165 +0.071
Oursopenseed 0.094 £0.038  0.211 £0.089  0.161 +0.070

5 Human 0.078 £0.048 0.197 £0.135 0.127 £0.071
Closed 0.078 £0.047 0.225 £0.148  0.120 +0.068
Oursmasgeip 0.078 £0.040  0.200 £0.111  0.119 +£0.058
Oursscan 0.080 £0.046  0.220 £0.132  0.123 +0.068
Ourssgp 0.080 +£0.047 0.209 £0.129 0.125 £+ 0.068

Ourscat-seg 0.080 £0.047 0.221 £0.141  0.123 +0.068
Oursppenseed 0.079 £0.048  0.221 +£0.142  0.122 +0.071

Table 10: Avg. and Std. Dev. scores for explanations associated with a model trained on the Place365
dataset using COCO-Stuff as a probing dataset.

B Clustered Compositional Explanations Algorithm

Let A be a binary activation matrix, C be a set of concepts, M be a set of binary segmentation masks,
one for each concept, and £ be the set of all possible logical connections of arity at maximum n
between concepts in the concept set C. These quantities are computed as described in Section 3 of
the main text. The goal of compositional explanation algorithms is to find the label L € £" whose
mask maximally overlaps with the neuron binary activations A. Formally, these algorithms find the
solution for the following objective:

argmax ToU (L, A, M) (16)
Legn
IoU is defined as:
AN O(M, L)
IoU(L,AM) = ———— 17
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Cluster Method ToU ActCov DetAcc

1 Human 0.077 +£0.007 0.090 +0.008 0.362 + 0.040
Closed 0.193 +0.014 0.280 +£0.014 0.385 £0.039
OursMasQCLIP 0.269 £ 0.022 0.499 40.015 0.369 4 0.038
Oursscan 0.209 +0.014 0.324 £0.015 0.371 £0.036
Ourssgp 0.238 +0.018 0.407 +£0.015 0.366 + 0.038

Ourscar-seg 0.189 +o0.011 0.277 £0.009 0.377 £0.036
Oursopenseed 0.276 £0.022  0.522 £0.016  0.370 £ 0.036

2 Human 0.074 +£0.010 0.107 £0.014 0.199 +0.029
Closed 0.115 +£0.014 0.232 £0.034 0.190 +0.030
OHI‘SMaSQCL[p 0.132 £0.015 0.438 £0.034 0.160 £ 0.020
Oursscan 0.132 +£0.014 0.296 £0.038 0.195 4+0.028
Ourssgp 0.134 +£0.014 0.335 £0.051 0.185 +0.023

Ourscarses  0.131 £0.014  0.282 +£0.033  0.201 +0.033
OurSopenseed ~ 0-137 +£0.016 0479 +£0.042  0.162 +0.021

3 Human 0.082 £0.018 0.134 40.031 0.184 +0.051
Closed 0.105 £0.021 0.201 +0.051 0.191 +£0.046
OuI‘SMaSQCL[p 0.107 £0.020 0.272 £0.100 0.166 £ 0.047
Oursscan 0.117 £0.021 0.290 +£0.060 0.169 +0.037
Oursgsgp 0.115 £0.021 0.294 +£0.066 0.164 4+ 0.037

Ourscarses  0.117 £0.022 0305 +£0.051  0.163 +0.038
OurSopenseed 0-110 +£0.020  0.283 +£0.100  0.164 + 0.040

4 Human 0.098 £0.050 0.183 £0.076 0.186 =+ 0.095
Closed 0.117 £0.051 0.248 £0.089 0.188 =+ 0.082
OursysocLie 0.104 +£0.049  0.272 £0.104  0.146 + 0.069
Oursscan 0.103 £0.042 0.327 £0.103  0.136 =+ 0.062
Ourssgp 0.100 £ 0.041 0.327 £0.103 0.128 =+ 0.054

Ourscar-seg 0.099 £0.043 0.322 £0.108 0.130 +0.059
Oursppenseea 0.101 £0.044  0.288 £0.102  0.138 +£0.065

5 Human 0.077 £0.062 0.247 £0.173 0.106 +0.078
Closed 0.084 £0.053 0.296 £0.177 0.114 +0.068
Oursyasocie 0.058 £0.040  0.322 £0.212  0.067 +0.045
Oursscan 0.055 £0.039 0.343 £0.202 0.064 +0.046
Ourssgp 0.051 £0.032 0.370 £0.210 0.058 +0.038

Ourscat-seg 0.051 £0.030 0.357 £0.219 0.058 +0.034
Oursopenseed 0.057 £0.037  0.282 £0.199  0.070 £ 0.044

Table 11: Avg. scores for explanations associated with a model trained on the Place365 dataset using
VOC2012 as a probing dataset.

and (M, L) is a function that returns the logical combination of the masks in M of the concepts
involved in the label L.

Exhaustive search over £™ is computationally infeasible in most of the settings commonly considered
in literature. To address this problem, [44] propose to use beam search in place of exhaustive search.
This algorithm has been extended by [29]] to speed up the computation of explanation using a beam
search guided by the Min-Max Extension per Sample Heuristic (MMESH).

While we refer the reader to [44] and [29] for full details of the algorithm and its procedures, we
briefly outline its main steps and components below.

The pseudocode is shown in Algorithm [I| At each step ¢, the algorithm maintains a beam of b
candidate explanations, selected based on the highest IoU scores from the previous step. From this
beam, it generates a search space by combining the beam labels with the concepts in the concept set
C. The combinations are based on the propositional logic operators AND, OR, and AND NOT. For
each candidate in this search space, the algorithm estimates the IoU using precomputed heuristic
information. The candidates are then sorted based on these estimated scores. At this point, the

24



Cluster Method ToU ActCov DetAcc

1 Human 0.128 +£0.048 0.296 +0.120 0.198 +0.072
Closed 0.134 £0.049 0.304 +£0.119 0.205 +0.067
Ours 0.133 £0.047 0.294 £0.119 0.208 + 0.068

2 Human 0.209 +£0.041 0.345 +0.040 0.361 +0.108
Closed 0.205 +£0.039 0.334 +£0.047 0.360 +0.100
Ours 0.204 £0.039 0.325 £0.045 0.369 +0.107

3 Human 0.207 +£0.026 0.345 +0.024 0.344 +0.061
Closed 0.204 +£0.026 0.336 +£0.023 0.346 + 0.062
Ours 0.201 £0.026 0.322 £0.025 0.353 +0.061

4 Human 0.177 +£0.058 0.325 +0.080 0.290 +0.102
Closed  0.175 £0.056 0.320 £0.075 0.286 =+ 0.099
Ours 0.178 £0.057 0.315 £0.072 0.299 +0.104

5 Human 0.103 +£0.047 0.274 +0.118 0.158 +0.086
Closed 0.108 +£0.048 0.287 +0.119 0.158 +0.075
Ours 0.108 £0.048 0.286 +£0.116 0.160 =+ 0.082

Table 12: Avg. and Std. Dev. scores for explanations associated with a DenseNet161 model trained
on the Place365 dataset using Ade20K as a probing dataset.

Cluster Method ToU ActCov DetAcc

1 Human 0.192 +0.024 0.333 +0.024 0.314 +0.053
Closed 0.188 +£0.023 0.322 £0.029 0.314 +0.050
Ours 0.184 +£0.022 0.309 £0.020 0.317 £0.054

2 Human 0.115 +£0.026 0.300 +0.078 0.161 +0.035
Closed 0.117 £0.025 0.292 +£0.065 0.167 +0.038
Ours 0.117 £0.025 0.287 £0.075 0.169 +0.035

3 Human 0.097 +£0.028 0.262 +0.100 0.142 +0.043
Closed 0.101 £0.029 0.277 £0.091 0.143 +0.042
Ours 0.102 £0.029 0.272 £0.099 0.145 £0.040

4 Human 0.079 +£0.028 0.233 +0.126  0.120 +0.039
Closed 0.082 +0.028 0.265 +0.134 0.117 +0.038
Ours 0.082 £0.028 0.251 £0.127 0.121 £0.039

5 Human 0.055 +£0.028 0.226 +0.191  0.093 +0.064
Closed 0.054 +£0.023 0.254 +0.186  0.080 =+ 0.049
Ours 0.059 £0.026 0.245 +£0.183 0.094 +0.057

Table 13: Avg. and Std. Dev. scores for explanations associated with an AlexNet model trained on
the Place365 dataset using Ade20K as a probing dataset.

algorithm computes the IoU for the candidates associated with an estimate IoU greater than the
current beam minimum, and the b candidates with the highest IoU are retained as the beam for the
next step 7 + 1. This process is repeated until the maximum allowed explanation length is reached.
Finally, the algorithm returns the explanation that achieved the highest IoU across all steps.

Estimating IoU For each sample and each concept, MMESH computes both the bounding boxes
and the inscribed rectangles within the concept regions. This geometric information is then combined
with concept sizes to estimate the IoU of a given label L.
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Cluster Method SampleCov ExplCov

1 Human 00911 +£0.029 0.873 4 0.059
Closed 0.904 +0.028 0.872 +0.078
Ours 0.899 +£0.030 0.855 +£0.072

2 Human 0.766 +0.065 0.693 4 0.127
Closed 0.743 £0.057 0.690 £ 0.136
Ours 0.752 £0.072  0.667 +0.126

3 Human 0.559 +0.103 0.538 +0.144
Closed  0.537 £0.094 0.540 +0.122
Ours 0.549 +£0.103 0.522 +0.128

4 Human 0.380 +£0.129 0411 +0.186
Closed 0.342 +0.112 0.441 +0.173
Ours 0.369 +£0.122  0.417 £0.179

5 Human 0.246 £0.151 0.285 4 0.202
Closed 0.174 £0.101 0.343 4+0.211
Ours 0.212 £0.121 0.311 £0.200

Table 14: Avg. and Std. Dev Sample Coverage and Explanation Coverage for explanations associated
with a model trained on the Place365 dataset using Ade20K as a probing dataset.

In formulas:

IoU(L,AM,®) = = = ZL@A =
U Zmé@ u» (18)
I,

ZwE’D |A| + Zme’D |9(Mr’ L)‘ - Ix

The specific computation of the estimate intersection I1” and the estimated label mask 6(M=, L)
depends on the logical operator connecting the left side (L) and right side L_,) of the label. In all

cases, I” is an overestimation of the actual intersection and (M=, L) is an underestimation of the
actual label mask. These conservative estimations ensure that the algorithm finds the optimal solution
within the beam. Specifically:

R I° = min(|[IMS(x, L_)| + |[IMS(z, L_,)|, | M (z))) (19)
O(M*, L) = maz(|0(M*, L_)|,
|0(M*, L), (20)
o(M=*,L_UL_))
AND R
I* = min(|[IMS(z, L )|, |[IMS(z, L_,))) 1)
O(M=, L) = maz(MinOver(L), I,) (22)
AND NOT R
17 = min([IMS(z, L )|, |M*| — [IMS(z, L_)|) (23)
8(M*, L) = maz(|0(A%, L_)| — MazOver(L), I,)) (24)

where: M” and A are defined as in Section IMS(x, L) denotes the intersection size between
the label mask (M *, L) and the neuron binary activation A* computed a generic activation range
(11, 72); MaxOver(L) is a function that returns the maximum possible overlap between the bounding
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Algorithm 1: Beam Search Guided by MMESH

Input: C, M, A, MMESHInfo, b, length
Output: BestlLabel,BestloU
Beam «+ empty list
UpdatedInfo + MMESHInfo
for ¢, ; in C do

lou < compute_iou(cy ;, M, A)

Beam.add(label = ¢y, ;, iou = lou)
end
sort(Beam) # Sort by IoU
# Select the best b candidates
Beam «+ Beam[:b]
MinloU « find_min(Beam)
for 2 to length do
SearchSpace + expand_beam(Beam, C)
Estimations < estimate_iou(SearchSpace, MMESHInfo)
sort(Estimations)
for L, EstloU in Estimations do

if EstloU < MinloU then

# All the other labels cannot be added to the beam

break
end

lou < compute_iou(L, M, A)
Beam . add((label=L, iou=/ou))
end
sort(Beam)
# Select the best b candidates
Beam «+ Beam[:b]
# Compute and update info
MinloU < find_min(Beam)
MMESHInfo < update_info(MMESHInfo, Beam)

end
BestLabel, BestloU < max(Beam)
return BestLabel, BestloU

boxes associated with the left and right sides of L in the sample z; and MinOver(L) is a function
that returns the minimum possible overlap between the inscribed rectangles sassociated with the left
and right sides of L in the sample x.

For a complete derivation of these estimations and proofs, we refer the reader to [[29].

C Limitations

While, as shown in the previous sections, the framework is flexible and competitive across several
settings, we identified several limitations that can serve as a base for future research on both open
vocabulary semantic segmentation and explainability.

Number of Concepts. The number of concepts that can be tested is constrained by the available
memory. Ideally, we would like to evaluate every possible concept in a vocabulary (e.g., the most
common 10,000 words in English). However, in practice, the output of segmentation models is a
matrix s, € R/ where the first dimension represents the logits (or output probabilities) of all
the concepts in the given concept (sub)set.

Although, as explained in Section 3, the first dimension can later be reduced by considering only the
maximum value as the model’s prediction, this matrix still needs to be loaded into memory, even if
only temporarily. Consequently, the maximum number of concepts that can be used in explanations
is limited and influenced by the available memory on the workstation and the resolution of the
segmentation masks.
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Completeness of the Concept Subset One of the limitations of the current framework is its
sensitivity to the completeness of each concept subset. Since the open vocabulary segmentation
model is “forced” to assign at least one concept to every pixel, the concept subset must be as complete
as possible to account for all the possible concepts in the input. When an input element cannot be
described by using the concepts in the concept subset, that element leads to hallucinations by the
segmentation model. Such hallucinations impact the explanation quality of the wrongly assigned
concept, potentially triggering a cascade effect. While this issue can be mitigated by including generic
concepts (i.e., “background”, “thing”, or “other”) into the concept subset, their effectiveness depends
on the training recipe used to pre-train the backbone models (e.g., whether a background class was
included in the training). To address this limitation, future work could explore adaptive mechanisms
to filter out unreliable masks, possibly arising from hallucinations, thereby reducing such sensitivity.

Sensitivity to the Concept Subset The selection of concepts within a generic concept subset can
also affect both the quality of the computed explanations and the performance of the framework
itself. While it is desirable to have multiple granularities across different concept subsets, including
multiple granularities within a single subset could potentially cause inconsistency in explanations.
For example, if both the “animal” and “cat” concepts are included in the same subset, the model is
forced to choose between them when segmenting a cat, even though both could be considered correct.
In these cases, the choice will depend entirely on the biases learned from the training dataset and
labels used to train the segmentation model or the multi-modal model. To mitigate this issue, we
recommend separating concepts with different levels of granularity into different concept subsets,
ensuring that two concepts within the same subset cannot be used to describe the same element.
We leave for future research the development of an algorithm that can navigate and mitigate this
sensitivity.

Dependence on Prompt Templates One limitation associated with research in open vocabulary
semantic segmentation is its reliance on prompt templates. Most of the analyzed models fine-tune
the multi-modal backbone using fixed prompt templates (e.g., “a photo of a {}”’). These prompts
are typically designed for the semantic segmentation task, which focuses on objects and tangible
elements (e.g., sky, tree). Once the model has been fine-tuned, the number of templates is fixed, and
replacing some of them can lead to out-of-distribution issues. This lack of flexibility reduces the
models’ effectiveness in recognizing abstract concepts (e.g., patterns) due to the resulting unnatural
descriptions and the impossibility of introducing new prompts. The only mitigation could involve
additional fine-tuning of the multi-modal model for the explainability task. We call for further
research in this direction to make these models more adaptable during inference and to support greater
variability in prompt templates during fine-tuning, especially to account for downstream tasks such
as explainability.

Refinements’ Cascade Effect While this is not strictly a limitation of the framework, we want
to emphasize and make the reader aware of the potential cascade effect when applying refinements
to the concept set. As explained in the main text, users can modify the concept set after analyzing
explanations to retrieve potentially improved explanations based on the refined set. However, when
making such refinements, it is important to re-generate the masks for the subsets where the new
concepts are introduced. Indeed, adding a concept to the subset changes the output size of the
segmentation model and, consequently, its output distribution. Therefore, this adjustment can alter
predictions, particularly the most uncertain ones, for all concepts in the concept subset, even those
unrelated to the newly added concepts. At the explanation level, the experiments reported in the
main text did not reveal significant changes in explanations. The only difference we observe is in
the selection of concepts used to exclude portions of the dataset (e.g., Cat AND NOT Car). These
concepts are used by the compositional explanation algorithm to exclude edge cases of neuron
behavior. In this case, multiple choices led to similar outcomes, explaining the differences. However,
we expect that if the newly added concepts substantially improve the coverage of the concept subset
or better align its granularity with the recognition capabilities of the backbone model, this could
potentially result in more significant shifts in explanations, which should be monitored.
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D Concept Set for CUB

This section describes the concept set used for the experiments on the CUB dataset in the main text
and discusses alternatives and challenges in the selection process for concept sets.

The concept set was chosen based on the availability of a list of relevant concepts for the task,
specifically the categories used in the dataset’s annotations. Note that we do not use the annotations
themselves; the only relevant information is the list of concepts. This list includes bird species,
as well as combinations of colors, shapes, and patterns associated with bird parts. After iterative
refinements, the resulting concept set is divided into the following subsets:

Bird species (e.g., black footed albatross)

Element colors (e.g., bird colors like blue bird and background colors)
Bird shapes (e.g., long-legged bird)

Parts (e.g., bird’s wing)

Colored parts (e.g., blue bird’s wing)

Part shape (e.g., curved bird’s bill)

Nk wh =

Part patterns (e.g., solid bird’s breast)

These subsets are further divided into three levels of granularity: the first includes bird species, bird
shapes, and colors; the second includes parts; and the third includes all remaining subsets. We also
include the set of concepts annotated in the Ade20k dataset as an additional subset. This decision
allows the detection of neurons that capture individual background elements (e.g., water), potentially
exploited by biases in the network, as well as neurons that generally recognize birds (recognized as
“animals”) without specialization. To mitigate hallucinations, we also added the generic concepts
“background” and “other” to each subset to provide the segmentation model with default choices.
Masks generated for these generic concepts are excluded from the explanation generation. The full
list of concepts will be released as supplemental material and included in the official repository upon
acceptance.

It is worth noting that the specific concept set obtained after iterations of our refinements is not,
in general, the optimal one and potentially better sets could be found for specific implementations
of the framework. Other than identifying the limitations discussed in Section [C} throughout the
refinement process, we also observed a relation between the specificity of the concepts and the
completeness of the concept subset. In this context, we noted that greater specificity in the concept
subset helps the segmentation model to reduce hallucinations when the concept subset is either highly
specific or weakly complete (i.e., the set is completed by the concepts “background” and “other”
whose effectiveness depends on the specific backbone model). For example, adding the middle term
“bird’s” to the concept subset of parts empirically improved segmentation masks. A similar effect
could be achieved by merging the Ade20k set with single-granularity concept subsets. However,
sharing concepts across multiple subsets causes inconsistencies in mask generation (i.e., one can
have different masks for the same concept across two different subsets) and, consequently, in the
explanation process. We leave the development of a framework capable of addressing and managing
repeated concepts across multiple concept subsets as a direction for future work.

E Leveraging WordNet to Analyze the Misalignment

This section describes the multi-step process we use to analyze the misalignment between explanations
computed over human and open vocabulary-segmentation by leveraging the semantic knowledge
graph of WordNet [42]. The process consists of the following steps:

Step 1: Mapping the Concept Set to Nodes in WordNet While this step can be performed manu-
ally, we utilize information from Ade20k to implement it in a semi-automatic manner. Specifically,
each class in the dataset is associated with a list of synonyms retrieved from WordNet. We leverage
this list, when available, to locate the corresponding node in the WordNet graph. Given a concept and
its list of synonyms, we select the node whose lemmas have the maximum overlap with the list of
synonyms. For concepts without available synonyms, we extract the most common node in WordNet
associated with that concept (i.e., the first result returned by a WordNet query). Finally, we manually
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inspect the generated mappings and refine the associations for the following concepts: water, cushion,
van, plate, and radiator.

Step 2: Extracting the Explanation Differences This step focuses on identifying differences
between explanations (e.g., produced by two different methods). In the main text, we search for
concepts identified by approaches that rely on human-annotated data but are absent in the explanations
generated by our framework. This step needs to deal with two tasks: identifying differing concepts
and accounting for the logical meaning induced by logical operations.

When both explanations share the same concept subset, identifying differing concepts is straight-
forward. However, when the explanations are derived from different concept (sub)sets, we rely on
the synonyms of each concept to identify equivalences. In this case, two concepts are considered
equivalent if they share at least one synonym. For dealing with the logical meaning, we consider
two explanations equivalent if they satisfy logical equivalences (e.g., A OR B is equivalent to B
OR A). In computing such equivalences we ignore the negative side of explanations, such as the
concept C in the explanation ((A OR B) AND NOT C). Indeed, as explained in Section [C|(i.e., in the
paragraph discussing the cascade effect), explanations can differ in their negative components while
still achieving the same overlap with the neuron’s activations.

Step 3: Identifying a Meaningful Ancestor Once a missing concept has been identified in Step
2, we use the mapping generated in Step 1 to identify its corresponding node in the graph. In
this step, we search for a meaningful common ancestor by tracing the path of hypernyms from the
concept’s node to the root of the tree. This is done by examining the hypernym relations between the
identified concept and any concept in the explanation retrieved by the alternative method. Although
any two nodes in the tree always share at least one common ancestor (i.e., the root node), ancestors
located high in the hierarchy are often too abstract to provide meaningful insight. To address this, we
consider an ancestor “found” only if it is not one of the highest-level nodes in the tree. Specifically,
we exclude the following general nodes: equipment, substance, tracheophyte, piece of furniture,
furnishing, barrier, art, surface, vessel, container, covering, device, way, path, craft, transport,
conveyance, natural object, object, attribute, form, relation, impediment, structure, entity, matter,
creation, grouping, artefact, physical entity, whole, means, abstraction, measure, being, language
unit, consumer goods, durable goods, animate thing, causal agency, part.

Step 4: Remapping the Concept Set and Generating new Masks At the end of Step 3, the
process generates a mapping between the missed concepts and their corresponding generalizations
identified in the tree. Using this mapping, we revisit all the concepts in the concept subset, map them
to their identified generalizations (if applicable), and generate a new concept set based on this updated
mapping. Once the new concept set is defined, we generate updated segmentation masks using it.

This iterative process (from Step 2 to Step 4) continues until no further generalization can be identified.
In our case, we repeated this process three times, reducing the total number of concepts in Ade20K
from 150 to 101.

F Isolating Concept’s Impact on Explanations

This section describes the procedure to isolate and evaluate the effect of a concept in both an
explanation and the corresponding neuron’s activations. Specifically, given an explanation of length n
and a concept ¢; included in the explanation, we compute: (1) the samples where the full explanation
holds, (2) the samples where c; is present, and (3) the samples where the neuron is active within the
considered activation range. Then, we compute the intersection of these three sets and we randomly
visualize m samples, highlighting the masks associated with ¢;. These visualized samples represent
instances where the concept is present, the neuron is active, and the concept actively contributes to
the explanation.

To analyze the unexplained portion of the neuron’s behavior, we consider sub-explanations S'E of the
original explanation, where SE has a length s < n. We then extract the samples where the neuron
is active, but the sub-explanation S E does not hold. This set represents the portion of the neuron’s
activations not explained by the sub-explanation. In our case, we use as sub-explanation the literals
shared between two different approaches. As in the previous case, we randomly visualize m samples
from this set, highlighting the masks produced by binarizing the activations within the specified
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Scores  Align Prec  Relev
Places365 Probed Model

Human 1.12 1.22 1.22
Closed 1.42 1.41 1.24
Our 1.05 1.27 1.30

CUB Probed Model

Human 1.31° 139" 0.72°
Closed 1.22 1.47 1.09
Our 1.37 1.40 0.92

Table 15: Std. Dev for Alignment, Precision, and Relevance scores attributed by 100 participants to
explanations computed by all the competitors. The superscript” indicates that the results are computed
on a different probing dataset.

activation range. These two visualizations are compared against each other to identify a potential
misalignment between parts of the explanation and the neuron’s behavior. To ease the analysis and
comparison of the visualizations, we prioritize samples associated with larger masks when selecting
the samples for visualization.

G User Study Details

As described in the main paper, we conducted a user study to qualitatively assess the performance of
our framework. Designing such a study presents several challenges. Indeed, neuron-level explanations
are intended for researchers or developers involved in building or analyzing the model. Therefore,
the complexity of the logical formulas and the need for a deep understanding of the model’s training
task represent critical factors and current limitations of this type of explanation. These characteristics
constrain the pool of suitable participants and necessitate careful consideration when designing the
study instructions.

Setup To recruit participants, we used the Prolific platfornﬂ Eligibility criteria required participants
to be Al taskers (i.e., a special group of Prolific participants with proven skills in completing Al
evaluation and training taskﬂ). Additionally, participants were required to have completed over 100
prior submissions with an approval rate above 90%, and not be affected by color vision deficiency.
The former requirements are common in the platform and ensure familiarity with the platform itself.
The latter requirement was necessary due to the use of color-based concepts in the explanations and
the importance of color features for distinguishing bird species in the CUB dataset. The survey is
hosted and has been created using the Qualtrics platforrrﬂp

The median completion time for the survey was ~30 minutes and all participants were compensated
at a rate above the minimum wage in the country of the data collector (full details will be disclosed
upon acceptance to preserve anonymity). We recruited a total of 100 participants. Three responses
were excluded from the analysis due to their completion times (less than 10 minutes), which were
significantly shorter than the median and indicated potential low-quality evaluation.

The full question pool consisted of 120 questions (i.e., 60 questions per model, 20 questions per score
and 20 per method). Each model question refers to a different neuron, thus we consider explanations
associated with 60 different neurons. Neurons have not been cherry-picked and they correspond
to the neurons at the indices 0-60 for their respective models. All the explanations are associated
with the highest cluster and competitors do not share neurons. Each participant was presented with a
randomized subset of 30 questions, comprising 10 questions for each score. Due to this randomization,
the 10 questions assigned per score could include questions related to one, two, or all competitor
methods (see the “Alternative Design Choices” paragraph below for a discussion of this design).

“https://www.prolific.com/
Shttps://participant-help.prolific.com/en/article/5bafOc
®https://www.qualtrics.com/
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Figure 4: Examples of highly scored “bird” explanations for precision despite most of the images
refer to bird parts (head (top) and wings (bottom)). Participants were asked to evaluate only the
unmasked regions of the images.

Scores Participants were asked to rate how many concepts in the explanations generated by each
method were aligned, precise, and relevant on a scale from 1 (none) to 5 (all). Given a randomly
sampled set of activation masks produced by a neuron within a specific activation range, a concept
is considered aligned if it appears in at least a subset of the activated masks; precise if its level of
granularity matches that of the concepts included in the activation masks; and relevant if it is perceived
as discriminative for the given task. Note that, since the visualization is extracted independently
from the specific explanation, masks can be noisy and include more or different concepts from the
ones included in the explanations due to superposition [16[50]. The full set of instructions can be
found in the supplemental material. Here, we briefly report the definition of the scores given to the
participants:

* The alignment score measures the alignment between the label and what is shown in the
unmasked regions of a collection of images. A high alignment score means that most (or
all) of the concepts included in the label are also present in the unmasked regions of the
images. A low alignment score indicates that few (or none) of the label’s concepts appear in
the unmasked regions of the images.

 The precision score measures the difference between the granularity of concepts included
in a label and the granularity of the same concepts visualized in the unmasked regions of a
set of images. A high precision score indicates that the label accurately reflects the level of
detail (granularity) shown in the unmasked regions of the images. A low precision score
means that the label is either more general or more specific compared to what is shown.

* The relevance score is used to rate how relevant a concept is for the task (i.e., how informa-
tive it is about what the model has learned). A concept is highly relevant if it is discriminative
for the task (i.e., it provides useful information to distinguish between different classes or
categories of objects). It is correlated to the task if it may frequently appear in the data
related to the task but does not help differentiate between classes. A concept is considered
low in relevance if it is neither discriminative nor highly correlated.

Results The average scores are reported in the main paper, while the standard deviations are
provided in Table[T5] As discussed in the main paper, the user study confirms that our framework
performs consistently across both datasets. In this section, we provide a more detailed analysis of
these results.
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We begin with the model trained on the Places365 dataset. As expected, the explanations generated
by both the human baseline and our framework achieve comparable scores, with no statistically
significant difference between them. This similarity is reasonable given that both methods use
ADE20K as a concept set, which contains concepts that are known to closely align with the semantic
space learned by the Places365 model [2] and the differences in concept granularity affect only a
small subset of the explanations, as discussed in Section 4.3. In contrast, the Closed baseline receives
the lowest granularity score. While some concepts are shared between COCO (i.e., the dataset used to
train the segmentation model underlying the Closed baseline) and Places365, many relevant concepts
are either missing or represented at a different level of granularity, resulting in being considered
either too broad or too specific. The statistical significance of this difference is supported by P-values
< 0.001, obtained using a two-tailed t-test comparing the Closed baseline’s precision scores to those
of both the human baseline and our framework.

For the model trained on the CUB dataset, the human baseline probes the model using the Ade20K
dataset. While its precision score remains comparable to that observed when applied to the Places365
model, its alignment score significantly drops (P-value < 0.01 using a two-tailed t-test), likely
due to noise introduced by the model’s hallucinations over this dataset. We hypothesize that this
misalignment could become even worse when the probing dataset differs substantially in terms of
visual features from those used to pre-train and fine-tune the probed model. Moreover, this baseline
achieves the lowest score in terms of relevance (P-value < 0.01, two-tailed t-test, compared to our
framework’s score for the same model). This drop is related to the fact that, in the vast majority of
explanations, the selected concepts are not semantically related to the task of bird species recognition
and thus are scored low by users.

Regarding the Closed baseline, it received unexpectedly similar precision scores to our framework.
This result is due to the inclusion of the concept “bird” in every explanation, which aligns with
the fact that all images in the CUB dataset show birds. Since this behavior represents a degenerate
case, where a generic concept is trivially included in all explanations, it should ideally be penalized
in a meaningful evaluation. After analyzing the participants’ responses, we hypothesize two main
reasons for this outcome. First, at the individual instance level, it is difficult for inexperienced users
to penalize the use of a concept like “bird” in a bird dataset, even when activation masks highlight
only parts of the bird (Figure [). This is especially true when, due to the study design and the
randomness of the sampling process, users are never exposed to explanations associated with a more
fine-grained granularity (i.e., they receive only closed and human baseline questions). Second, Closed
explanations often contain only one concept (“bird” in this case). This creates a perceived scenario in
which users must decide between two extremes: either the explanation perfectly fits or does not fit
at all with the granularity shown within the images. In such cases, participants may be reluctant to
assign the lowest score to a concept that is slightly more general than the visualization.

In conclusion, our framework represents the preferred approach overall. Indeed, when applied to
explain the CUB model, its explanations are ranked as the most relevant explanations (P-value
< 0.001 using a two-tailed t-test with respect to both the baselies) by a significant margin while
also achieving high scores in both alignment and precision and avoiding the degenerate behaviors
observed in the other two baselines. When applied to the Places365 model, it is ranked comparably
to the best baseline (human) in all the scores.

Alternative Design Choices and Limitations of User Studies The instructions and the user study
design we used in this paper is the product of several iterations aimed at reducing the bias and
improving the evaluation quality. Specifically, the resulting design is the one that penalizes the
baselines the least. Below, we briefly discuss some alternative designs discarded because the resulting
user study would have been too hard to understand for an inexperienced user, would have biased the
evaluation, or would have penalized a baseline too much.

 Let the participants rank different explanations for the same neuron. One of the first
designs we considered was to ask users to rank explanations produced by different methods
for the same neurons. This approach would have allowed us to directly identify which
explanation is preferred on average. However, this design would have unfairly penalized
the human baseline in the questions related to the CUB model. In that case, the human
baseline generates explanations based on a different dataset (Ade20K). As a result, if we
had shown random activation masks from the CUB dataset (on which the model is trained),
most, if not all, of the explanations from the human baseline would appear misaligned,
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imprecise, and irrelevant, as they were computed using different concepts and a different
dataset. We considered the alternative of showing two sets of images per question, one
for the dataset used to generate the explanations and one for the dataset used to train the
model, but this would likely have confused participants, as the two set of images would
refer to entirely different concepts and the survey setup would have been different between
CUB and Place365 models. To resolve this issue, we adopted a design in which participants
evaluate each explanation independently, without seeing competing explanations. While
this approach prevents us from directly extracting rankings, we can still extract insights
through indirect comparisons. More importantly, this design keeps the structure of the
survey consistent and easier for participants to follow and understand.

Let the participants score the grade of alignment/precision/relevance instead of the
number of concepts. An alternative design is to ask participants to assign a numeric score to
each explanation, reflecting their perception of its overall alignment, precision, or relevance.
While this setup could be more suitable for expert participants (see discussion below
regarding participant pools), we believe it is not appropriate for non-researcher participants.
One of the main challenges with this design is achieving a consistent interpretation of the
scoring scale across participants. Although the instructions could include example ratings,
for non-experts the required level of detail would likely be so extensive that it could bias the
evaluation process and compromise the statistical significance of the results. Instead, we ask
participants to rank the number of concepts they perceive as aligned, precise, or relevant
in each explanation. This approach simplifies the task for non-expert users and avoids the
need for detailed examples or guidelines that might influence their judgments. The trade-off
of this design, however, is that methods producing shorter explanations, particularly those
with only one concept (i.e., the Closed baseline applied to the CUB model), may gain an
unintended advantage. In such cases, participants are often forced to choose between the
two extremes of the ranking scale (either all or none of the concepts are aligned, precise, or
relevant) and we observed a tendency to favor the positive extreme in these situations, as we
discussed in the previous paragraph.

Different level of details for instructions. We iterated several times on the level of detail
provided in the instructions and tested them with different types of users. While there is
no one-size-fits-all solution, the current version of the instructions is perceived differently
by different users. Based on early feedback, we found that some researchers working
in the same area as this paper might consider the instructions overly detailed or guided.
However, given the very limited number of experts worldwide in this specific field, the
likelihood of such users being recruited through a crowdsourcing platform is extremely
low and can be considered negligible. In contrast, most participants are individuals with
some familiarity with the Al domain, but who likely lack deep knowledge of explainability
or the specific tasks discussed in this work. According to some participants’ feedback,
they would have preferred even more detailed instructions and a more guided process, as
they often struggled to evaluate the explanations due to several challenges (e.g., image and
mask noise and resolution, edge cases). Regardless, we intentionally chose not to provide
additional guidance to avoid introducing bias into the evaluation process. We believe that
the “uncertainty” experienced by some users is an intentional and even desirable aspect, as
there are no definitive right or wrong answers (i.e., ground truth) in the context of these
types of explanations.

Different participants pool. Given the expertise required to understand logical formulas
and the deep familiarity with the underlying tasks needed to evaluate such explanations, one
possible option would have been to select participants for the survey exclusively based on
these two criteria. However, this approach would have resulted in a very limited participant
pool, making it difficult to obtain statistically significant results. Moreover, identifying and
recruiting such participants would have required considerable time and effort, effectively
ruling out the use of crowdsourcing platforms. For the same reasons, enlarging the participant
pool would have meant reducing the quality of the evaluations, as many potential participants
might lack knowledge of what constitutes an Al task or even a basic understanding of Al
itself. This would increase both the time required to comprehend the instructions and
the survey, and introduce noise into the user study, making it more challenging to extract
meaningful insights.
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In conclusion, given the challenges described in this section regarding the design of user studies for
this type of explanation, we argue that quantitative metrics, such as those used in Section 4, should
remain the main tool for evaluating these methods. However, user studies can still provide insights into
aspects that are difficult to capture quantitatively (e.g., relevance). As we have discussed, designing
unbiased and fair surveys for these neuron explanations, without compromising the evaluation quality
or statistical significance, presents several challenges. We therefore call for further research to
lower the expertise needed to interpret logical explanations and to address the need for deep domain
knowledge of the training dataset and tasks to evaluate them. These limitations currently restrict the
usefulness of these explanations to researchers or developers who are directly involved in training the
models to be explained.

H Broader Impact Statement

The opacity of the learning process in deep neural networks remains a major barrier to their adoption
in domains where understanding the rationale behind model decisions is essential for trust and
accountability. In this paper, we address one of the limitations highlighted in the broader impact
statement of [44]], namely the reliance on annotated datasets, which “may be expensive to collect and
may be biased in the kinds of features they contain (or omit)” [44]]. We argue that the explanations
generated by our framework can positively contribute to the broader impact of explainability methods
by expanding the range of use cases and potential users.

Although the contributions of this work are experimental and not deployed in downstream applications,
we recognize potential sources of negative societal impact if the explanation process is not prop-
erly verified or is maliciously manipulated. Specifically, incorporating pre-trained open-vocabulary
segmentation models into the explanation pipeline may introduce biases embedded in the segmen-
tation process. However, detecting and mitigating such bias is as challenging in model-generated
segmentations as it is in human-annotated datasets.

A more concrete vulnerability lies in the segmentation masks themselves: an adversarial actor could
subtly alter the output of the segmentation model in ways that are not immediately noticeable to users
but significantly distort the resulting explanations. Furthermore, as discussed in Section|G] this work
does not address the challenge related to the technical expertise required to implement and interpret
these explanations. Both these limitations can be mitigated in future research exploring adversarial
settings and improving the usability of compositional explanations.

I Reproducibility

To ensure full reproducibility, we will release the complete codebase and all scripts required to
reproduce the results presented in this paper upon acceptance. In the meantime, this section serves as
a brief summary and documentation of the experimental setup used by our framework, along with the
resources required.

I.1 Dataset, Models, and Explanations

In this section, we provide the repository, dataset, explanations, and model information, versions,
their corresponding licenses, download links, and a brief description of the modifications required to
ensure compatibility with our framework.

Datasets

* Mapillary Vistas [45] v. 1.2

— Accessible at: https://www.mapillary.com/dataset/vistas
— License: CC BY-NC-SA and subject to Mapillary Terms of Us{]

* Cityscapes [14]

— Accessible at: https://www.cityscapes-dataset.com/

"https://www.mapillary.com/terms
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— License: MIT license and custom terms of use?]
Pascal VOC [18]]

— Accessible at: http://host.robots.ox.ac.uk/pascal/V0OC/
— License: flickr terms of use|

PASCAL-Context-459 [43]

— Accessible at: https://cs.stanford.edu/ "roozbeh/pascal-context/
— License: flickr terms of usd

Ade20k [[77]

— Accessible at: https://ade20k.csail.mit.edu/
— License: MIT

COCO-Stuff [6]

— Accessible at: https://cocodataset.org/
— License: CC-BY 4.0 and flickr terms of usd2]

To make the datasets compatible with Detectron2 [63]], we follow the instructions reported in the
following repositories:

* https://github.com/cvlab-kaist/CAT-Seg/tree/main for Ade20k (150 classes
and its extended version), Pascal VOC, Pascal-Context, and COCO-Stuff

e https://github.com/facebookresearch/MaskFormer/tree/main| for Cityscapes
and Mapillary Vistas

Models

o CAT-Seg [L1]]
— Accessible at: https://github.com/cvlab-kaist/CAT-Seg
— License: MIT
— Version: Large (L)

* MasQCLIP [73]
— Accessible at: https://github.com/mlpc-ucsd/MasQCLIP
— License: CC BY-NC 4.0
— Version: Cross-Dataset

* SCAN [36]
— Accessible at: https://github.com/yongliu20/SCAN
— License: CC BY-NC 4.0
— Version: SCAN-VitL
* SED [66]
— Accessible at: https://github.com/xb534/SED
— License: Apache 2.0
— Version: SED (L)
* OpenSeed [73]
— Accessible at: https://github.com/IDEA-Research/OpenSeeD
— License: Apache 2.0
— Version: COCO 0365 SwinT
e Mask2former [75]
— Accessible at: https://github.com/facebookresearch/Mask2Former
— License: CC BY-NC 4.0

8https://www.cityscapes-dataset.com/license/
*https://www.flickr.com/help/terms
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— Version: COCO Panoptic SwinT

We slightly modified the implementation of all these models to provide a unified interface compatible
with the capabilities of our framework. Importantly, these modifications do not affect the pre-trained
weights and do not require retraining the segmentation models. Specifically, we extended the models
with an interface that allows arbitrary concepts to be added, removed, or specified on the fly. This
replaces the default interface, which relies on dataset-specific classes supported by Detectron2. When
necessary, we preserve model-specific dataset customizations by loading concepts from JSON files
provided by the original authors. For all the models, we use the default parameters suggested and
tested by the original authors.

Explanations Our framework generates explanations through a heuristic search guided
by the MMESH heuristic [29]. The implementation of the heuristic is based on
the one provided by the original authors, available at https://github.com/KRLGroup/
Clustered-Compositional-Explanations, while the search procedure is inspired by the com-
positional explanation repository at https://github. com/jayelm/compexp. In our experiments,
we fix the number of clusters to 5 and set the explanation length to 3, following the setup proposed in
[44]. The beam branching factor is also set to 5. For building the logical forms of explanations, we
employ the AND, OR, and AND NOT operators, as specified in [44].

Repository  As specified in Section[A.T] the technical settings considered in this paper and the ones
needed to replicate its results include the following libraries: PyTorch 1.3 [52], Detectron?2 [63]],
MMEngine 1.6.2 [12]], and MMSegmentation 0.27.0 [[13]]). Note, however, that our framework gener-
ally supports custom datasets and models. The core implementation is compatible with any PyTorch
version > 1.3 and does not rely on functionalities specific to MMEngine or MMSegmentation. The
only general requirement is that the open vocabulary segmentation model must be adapted to
the common interface expected by our framework for parsing datasets and that the dataset loading
function is made compatible with our implementation. A complete guide on how to integrate custom
models and datasets will be provided in the repository upon acceptance.

1.2 Resources

The computational resources required by our framework are determined by the choice of open
vocabulary backbone and the configuration used for compositional explanations. In this context,
our framework does not need additional resources beyond the ones required by the individual
segmentation models and the compositional explanation process. However, it does increase the time
needed to compute concept masks when generating masks for multiple concept subsets. Indeed, in
these cases, the framework requires parsing the dataset multiple times. For instance, in the case of
CUB, the framework employs 8 concept subsets, resulting in 8 times the time needed by the Closed
baseline, which parses the dataset only once. However, note that the time required to compute concept
masks is generally much lower than the time needed to compute explanations for a layer, particularly
when dealing with wide layers.

All experiments were conducted on a workstation equipped with an NVIDIA RTX 3090 GPU, 8
CPU cores, and 64 GB of RAM. The runtimes reported below are based on this setup. However,
the implementation of the framework supports lighter configurations at the expense of increased
computational time. In this case, the minimum requirements are either 12 GB of VRAM and RAM
(for GPU-based execution) or 24 GB of RAM (for CPU-only execution).

The phases of our framework can be identified as: the generation of masks and the generation of
explanations.

The time required to generate and store the masks in Compressed Row Format depends on (i) the
selected segmentation model, (ii) the dataset, and (iii) the number of concept subsets used in our
framework. As a rough estimate, for all the datasets but CUB, the human baseline takes ~4—10
minutes to process and convert the segmentation masks into the compressed format; the closed
baseline takes ~6—15 minutes; and the time required by our framework depends on the backbone
segmentation model. Among the tested open vocabulary backbones, MasqCLIP, OpenSeed, and SED
are the fastest, taking ~8-12 minutes; Cat-Seg takes ~15-20 minutes; and SCAN requires ~25-30
minutes. When processing the CUB dataset, the computation time increases due to its larger size and
higher image resolution. In this case, the closed baseline takes ~12 minutes, while for our framework
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implementations Cat-Seg takes ~25 minutes per concept subset, resulting in a total of ~5 hours;
MasqCLIP, OpenSeed, and SED take between 7 and 10 minutes per set, totaling ~1 hour; SCAN
takes ~1 hour per set, resulting in a total of ~8 hours.

The memory requirements of our framework depend on (i) the selected model, (ii) the total number
of concepts, and (iii) the number of concepts within each concept subset. Regarding the latter, as
discussed in Section [C] the number of concepts in a concept subset impacts the size of the output
generated by the open vocabulary segmentation models and, consequently, the memory required to
store these outputs, even temporarily. In practice, different implementations require between 8 and
16 GB of RAM or VRAM to store the segmentation masks in memory.

Finally, regarding the time needed to compute the explanations, it depends on the number of concepts
that overlap with the considered activation range, due to the heuristic employed by our framework.
Including a larger and more relevant set of concepts generally increases the number of overlapping
concepts, slightly raising the computational time per neuron. On average, all competitor methods
take less than 2 minutes per neuron for all models except the CUB model. For CUB, explanation
computation is approximately twice as slow, requiring 4-5 minutes per neuron. Additionally, the total
computation time depends on the number of neurons analyzed. For instance, the ResNet18 Places365
model contains 512 neurons in the last layer, while the CUB model contains 2048 neurons. As a
result, analyzing the full layer in the CUB model takes approximately four times longer than in the
Places365 model.

These per-neuron timings can be used to estimate the total time needed to replicate the experiments
reported in the paper. For example, assuming the workstation described in this section, reproducing
the results in Table f] would take approximately 2—3 days, while reproducing the experiments in
Table 5| would take about 8 days per open vocabulary segmentation model. Note that these runtimes
can be significantly reduced by running the code on GPU clusters and parallelizing the analysis of
models or neurons.

J Additional Preliminary Experiments

Before conducting the full set of experiments reported in the paper, we performed preliminary tests
to evaluate different configurations of the segmentation models. Since the primary goal of this work
is not to identify the optimal backbone for our framework, we did not explore this direction further.
However, these initial findings may serve as a useful starting point for future users or researchers.

* We do not observe a significant difference in the generated explanations when using the
standard dataset classes as concepts compared to the customizations provided by the original
authors for open vocabulary segmentation models. However, we adopted the original
customizations to ensure fairness and consistency with the authors’ intended use. While
we hypothesize that these customizations might have a minor effect on specific or rare
segmentation masks, their impact appears to be uniformly distributed across concepts and,
therefore, does not meaningfully affect the resulting explanations;

* We conducted preliminary experiments aimed at improving the template prompts used
to generate textual descriptions more tailored to explainability purposes. However, we
observed that modifying the templates employed by open-vocabulary segmentation models
affects negatively both the resulting segmentation masks and the explanations. Since these
models are fine-tuned using specific templates, we hypothesize that even slight changes can
lead to out-of-distribution behavior, resulting in potentially unreliable outputs. As noted
in Section [C] it is currently not possible to increase the number of templates in a trained
model. We leave the investigation of this limitation to future work on open-vocabulary
segmentation.

K Visual Comparison between Closed and Open Vocabulary Explanations

This section includes a visual comparison of the explanations generated by the Closed baselines and
our framework on the CUB dataset. Specifically, we show the explanations generated for the first 20
neurons of the CUB model described in Section 4 for the highest cluster (Figures 3] to[TT).
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As noted in the main text, we can observe that the Closed baseline fails to recognize the specific
concepts captured by the activation range and its explanations are comparable only when the neuron
focuses on background elements or general concepts (e.g., water, sky), thus highlighting the lack of
flexibility of this baseline.
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Neuron 0

Closed Vocab
Expl: bird | oU:0.032

Open Vocab Multi Granularity
Expl: ((mockingbird DR purple finch) OR myrtle warbler) | loU:0.07

Neuron 1

Closed Vocab
Expl: bird | loU:0.041

Open Vocab Multi Granularity
Expl: ((eyeline bird's head OR tennessee warbler) OR gray bird) | loU:0.065

Neuron 2

Closed Vocab
Expl: bird | loU:0.024

Open Vocab Multi Granularity
Expl: ((white bird's under tail OR elegant tern) OR multi-colored bird's throat) | 10U:0.084

Figure 5: Explanations associated with Cluster 5 of neurons from 0 to 2 by the Closed baseline and
our framework. In blue are areas of neuron activation within the considered range.
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Neuron 3

Closed Vocab
Expl: ((bird OR roof) OR donut) | 1oU:0.016

Open Vocab Multi Granularity
Expl: ((swallow bird AND bird's bill) OR indigo bunting) | 1oU:0.075
T

Neuron 4

Closed Vocab
Expl: ((bird OR orange) OR truck) | 10U:0.03

Open Vocab Multi Granularity
Expl: ((eyeline bird's head OR orange bird) OR horned grebe) | loU:0.061

Neuron 5

Closed Vocab
Expl: ((bird OR surfboard) OR book) | loU:0.03

Open Vocab Multi Granularity
Expl: ((nighthawk OR downy woodpecker) OR bobolink) | IoU:0.086

Figure 6: Explanations associated with Cluster 5 of neurons from 3 to 5 by the Closed baseline and
our framework. In blue are areas of neuron activation within the considered range.
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Neuron 6

Closed Vocab
Expl: bird | lou:0.02

Open Vocab Multi Granularity
Expl: ((bird's bill AND NOT solid bird's back) OR summer tanager) | 10U:0.058

Neuron 7

Closed Vocab
Expl: ((bird OR handbag) OR cell phone) | loU:0.027

Open Vocab Multi Granularity
Expl: ((yellow bird OR hummingbird) AND all-purpose bird's bill) | 10U:0.079

A,
-

Neuron 8

Closed Vocab
Expl: (bird OR elephant) | oU:0.035

Open Vocab Multi Granularity
((eyeline bird's head OR red breasted merganser) OR multi-colored bird's throat) | 10U:0.078

Figure 7: Explanations associated with Cluster 5 of neurons from 6 to 8 by the Closed baseline and
our framework. In blue are areas of neuron activation within the considered range.
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Neuron 9

Closed Vocab
Expl: ((bird OR keyboard) OR umbrella) | 1oU:0.019

Open Vocab Multi Granularity
Expl: ((eyeline bird's head AND NOT hooked seabird's bill) AND NOT rounded bird's wing) | loU:0.078

Neuron 10

Closed Vocab
Expl: ((bird OR wall-brick) OR motorcycle) | l0U:0.025

Open Vocab Multi Granularity
Expl: ((hummingbird OR hooked seabird's bill) OR northern flicker) | 1oU:0.055

Neuron 11

Closed Vocab
Expl: ((bird OR fire hydrant) OR dog) | loU:0.03

Open Vocab Multi Granularity
Expl: ((bird's head AND NOT white bird) AND NOT nighthawk) | IoU:0.069

Figure 8: Explanations associated with Cluster 5 of neurons from 9 to 11 by the Closed baseline and
our framework. In blue are areas of neuron activation within the considered range.
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Neuron 12

Closed Vocab

Expl: ((tree-merged OR flower) OR fruit) | loU:0.019
s =7 B

r ,( - L I D

Open Vocab Multi Granularity
Expl: ((tree-clinging bird AND green background) OR green violetear) | loU:0.057

Neuron 13

Closed Vocab
Expl: (bird OR dog) | loU:0.014

Open Vocab Multi Granularity
Expl: ((bird's bill AND NOT generic bird) OR belted kingfisher) | 1oU:0.063

% il

Neuron 14

Closed Vocab
Expl: ((bird OR book) OR chair) | 1oU:0.017

Open Vocab Multi Granularity
Expl: ((bird's leg OR trade name, brand name, brand, marque) OR caspian tern) | 1oU:0.048

/

Figure 9: Explanations associated with Cluster 5 of neurons from 12 to 14 by the Closed baseline
and our framework. In blue are areas of neuron activation within the considered range.
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Neuron 15

Closed Vocab
Expl: ((bird OR apple) OR elephant) | 0U:0.021

Open Vocab Multi Granularity
Expl: ((brown bird's back OR brown bird's bill) OR american pipit) | loU:0.089

Neuron 16

Closed Vocab
Expl: bird | loU:0.03

Open Vocab Multi Granularity
Expl: ((eyeline bird's head OR bobolink) OR cedar waxwing) | loU:0.064

Neuron 17

Closed Vocab

Expl: (bird OR dog) | loU:0.022

Open Vocab Multi Granularity
Expl: ((eyeline bird's head OR plain bird's head) OR great grey shrike) | 1oU:0.064

Figure 10: Explanations associated with Cluster 5 of neurons from 15 to 17 by the Closed baseline
and our framework. In blue are areas of neuron activation within the considered range.

45



Neuron 18

Closed Vocab
Expl: ((bird OR orange) OR fruit) | loU:0.026

Neuron 19

Closed Vocab
Expl: bird | 1oU:0.019

Open Vocab Multi Granularity
((hummingbird OR green kingfisher) AND animal, animate being, beast, brute, creature, fauna) | loU:0.143

Expl:

Figure 11: Explanations associated with Cluster 5 of neurons from 18 to 19 by the Closed baseline
and our framework. In blue are areas of neuron activation within the considered range.
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